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A B S T R A C T   

Unsuitable livestock farming is considered as a main driver of biodiversity loss. In the high elevation areas across 
the world, many subalpine and alpine natural herbaceous communities are highly sensitive to sheep overgrazing. 
Such habitats of high biogeographic and conservation value are refugia for slow-growing, locally rare, and cold- 
adapted species. However, at a regional scale, no maps of these sensitive habitats exist that the authorities could 
refer to for regulating grazing. We therefore studied the possibility of using habitat suitability modeling (HSM) to 
map five selected habitats that are potentially threatened by overgrazing in the Northern Alps of the Swiss canton 
of Fribourg. For each habitat, we defined a group of characteristic species and gathered their occurrences from 
national data centers. These occurrences were pooled within each group and used as presences to calibrate the 
HSM. High-resolution predictors (10 m) were used to achieve fine-scale modeling. The models predicted accurate 
and ecologically relevant distributions for three of the habitats: alpine swards and heaths on exposed ridges and 
peaks, unstable calcareous screes and vegetated snow patches. These results show that habitats that are topo-
graphically and environmentally well-defined can be finely predicted by HSM using distributions of character-
istic species for use in spatial conservation planning. In the context of summer pasture management, this helped 
us to translate the Swiss legal basis onto maps of authorized grazing pressure.   

1. Introduction 

Mountainous regions are hotspots of biodiversity: the topography, 
geology and climate form a great diversity of habitats with specialized 
flora (Körner, 1999). Land use, in particular logging and grazing, also 
has a major influence on plant distribution and richness in high eleva-
tion areas (Dirnböck et al., 2003). Agricultural activities have shaped 
alpine landscapes over centuries in many European countries, mainly 
through alpine transhumance. Seasonal migration to summer high 
pastures is still practiced today and remains culturally and economically 
very important (Bätzing, 2015). In general, the numbers of livestock in 
European alpine summer pasturelands have declined, with some ex-
ceptions, such as Switzerland (García-González, 2008), where 

approximately 400,000 cattle (260,000 livestock units) and 200,000 
sheep (23,000 livestock units) are brought each year to the summer 
pastures (Federal Office for Agriculture FOAG, 2020). 

Large herbivores affect vegetation community patterns and 
ecosystem functioning through processes such as grazing, browsing, 
trampling, defecation and urination (Mysterud, 2006). More or less all 
landscapes from the subalpine to the subnival zone are grazed (Kauf-
mann et al., 2021). Sheep graze freely on most summer pastures. In free- 
grazing, sheep often explore large areas but prefer high elevations and 
reach steep slopes and crests. Cattle, on the other hand, tend not to move 
too far from shelters (Zabel, 2019; Kaufmann et al., 2021). This free- 
grazing management is often accompanied by a very unequal use of 
pastoral resources. Some lower areas are undergrazed, accompanied by 
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a recolonization of the forest (Pellissier et al., 2013), while the sensitive 
areas in the alpine zone are frequently overgrazed (Meisser and Chate-
lain, 2010). 

At lower elevations and up to the subalpine level, low-intensity 
grazing on extensive pastures is often associated with a higher species 
richness compared to abandoned areas (Fischer et al., 2008). On the 
other hand, the literature shows rather inconsistent results on the effects 
of grazing at high elevations (Keller and Vittoz, 2013; Pardo et al., 2015; 
Kaufmann et al., 2021). Different experiments of grazing exclusion have 
been performed thus far, suggesting that the relationship between 
grazing intensity and plant diversity is not linear (Ning et al., 2004). The 
slow response of alpine species to grazing exclusion due to slow growth 
is difficult to study (Pardo et al., 2015). Abandonment of livestock 
grazing might decrease short-statured plants, stress-tolerant species of 
low or no nutritive value and mosses while promoting competitive 
species with high or medium nutritive value (Mayer et al., 2009; Vittoz 
et al., 2009). Some species of the highest alpine zone are adapted to low- 
intensity grazing, as typically ensured by ibex and chamois (Körner, 
1999). However, an early ascent by sheep to the highest portions of the 
summer pasturelands can interrupt the growth and reproduction of 
many alpine plants of special interest through defoliation and trampling 
(García-González, 2008). Communities react individually depending on 
elevation and grazing animals, yet long-term grazing exclusion studies 
are insufficient (Mayer and Erschbamer, 2017). 

Overgrazing is the use of pasture lands beyond the limit of their 
production capacity or an improper use in terms of grazing period and/ 
or duration (Enne, 2004). Overgrazing is identified as one of the most 
important disturbances resulting in grassland degradation (Wang et al., 
2019). It influences grassland conditions, which results in reduced 
vegetation cover, an increased abundance of unpalatable plant species 
and soil erosion (Wiesmair et al., 2017). It can lead to significant 
changes in biomass, floristic composition and diversity in an alpine 
context (Erschbamer et al., 2003). At the highest elevations, the com-
munities, generally late-successional, are very stable and therefore 
particularly sensitive to overgrazing (Leuschner and Ellenberg, 2017). A 
literature review of the impacts of overgrazing is available in Appendix 
A (online supplementary material). 

The mapping of habitats sensitive to overgrazing is therefore an 
important element for conservation and land management in alpine 
landscapes. The main issue is that such maps generally do not exist at a 
regional scale. Habitat suitability modeling (HSM), also called species 
distribution modeling or ecological niche modeling (Guisan et al., 
2017), is increasingly used in conservation and land-use planning 
(Guisan et al., 2013; Muscatello et al., 2021). HSM is a method for 
predicting the suitability of a location for a biological entity (e.g., spe-
cies, clade) based on its observed relationship with environmental 
conditions. Many modeling techniques and algorithms have been 
developed in recent decades (Guisan et al., 2017). HSM allows for the 
extrapolation of relatively few field samples to the entire potential 
range, which makes it a very useful tool for conservation, as maps over 
large regions are often necessary (Rodríguez et al., 2007). It is, for 
example, increasingly used to identify areas in need of restoration or 
preservation at the species level (Wilson et al., 2011; Guisan et al., 2013) 
and could also be used to identify alpine habitats sensitive to over-
grazing, for instance through pooling or stacking multi-species data 
(Ferrier and Guisan, 2006). However, to our knowledge, this has never 
been done. 

In Switzerland, federal legal instruments that define which habitats 
are subject to grazing restrictions exist (Conseil fédéral, 2013), but the 
cantons responsible for implementing this legal framework do not have 
maps showing which areas should be grazed with reduced pressure or 
should be forbidden. Our aim was to translate the legal basis onto maps 
that could be used by public authorities for grazing management. 

Accordingly, this study attempts to answer the following questions: 
(1) Can HSM be used for mapping habitats of high conservation value 
that can be locally threatened by overgrazing? (2) For which of the 

selected habitats are HSM predictions ecologically relevant? (3) Are the 
predicted maps usable for conservation purposes and land management, 
for example, for local authorities? 

2. Materials and methods 

2.1. Study area, habitats and species selection 

The study area (Fig. 1) comprises the southern part of the canton of 
Fribourg, Switzerland (from 46.438◦ to 46.773◦ N and from 6.794◦ to 
7.381◦ E), with an altitudinal gradient ranging from 530 to 2389 m a.s.l. 
(Vanil Noir). Approximately half of the area is covered by the Prealps. 

Five habitats of high conservation value that could be locally 
threatened by overgrazing were identified as candidate units for 
modeling (Fig. 2, Table B1 in Appendix B): (1) Alpine swards and heaths 
on exposed ridges and peaks. These areas face extremely harsh climate 
conditions, comparable to Arctic environments (García-González, 
2008). They are relicts of the last ice ages and serve as microrefugia for 
cold-adapted species (Delarze, 2015). (2) Unstable calcareous screes. A 
sparsely vegetated habitat, including highly specialized species adapted 
to moving screes and high limestone content (Delarze, 2015) (3) Dry 
alpine and subalpine calciphilous stepped grassland. A low productive and 
species-rich alpine habitats of high conservation value. (4) Subalpine 
mesophile calciphilous closed grasslands. These grasslands can maintain 
themselves naturally at the subalpine level in avalanche paths and are 
well known in the regions for their rich biodiversity (Gerber et al., 
2010). However, these grasslands are more productive and probably less 
sensitive to overgrazing. (5) Vegetated snow patches, with a very short 
vegetation period (maximum 3 to 4 months), are unproductive and often 
moist (Delarze, 2015). The relationship with the habitat classification of 
the European Nature Information System, EUNIS (Davies et al., 2004), 
and of Switzerland, TYPO-CH (Delarze, 2015), is given in Table B1. 

Each habitat was characterized by a list of species. We included 
mainly species of vascular flora but also some bryophytes and lichens. A 
species was selected in a given habitat if 1) it occurred in the study area 
and 2) it was considered a characteristic (diagnostic) or constant species 
in that habitat (Chytrý and Tichý, 2003). Characteristic species are 
concentrated in a particular habitat and are absent or rare in other 
habitats. As such, they are useful as positive indicators of the habitat. 
Constant species are those that occur frequently but not necessarily 
exclusively in a particular habitat (Chytrý et al., 2020). The habitat 
classification of Switzerland (Delarze, 2015), along with our field 
knowledge of the region, was used to select the species. For each habitat, 
all characteristic species were selected (if present in the study area and if 
data were available), and constant species were selected when they were 
judged as informative (i.e., generally rare in other habitats in the region, 
according to local experts). All species occurrences were then pooled 
and modeled as one single entity for each habitat. 

2.2. Species distribution datasets 

Data of occurrences for all selected characteristic and constant spe-
cies in the study region were gathered from the different Swiss national 
databanks (Appendix B). Only data with a location accuracy lower than 
20 m were retained. For each of the habitats, all occurrences of char-
acteristic and constant species were merged. These pooled datasets were 
used as presence points for modeling. 

Most presence-only habitat suitability models need some kind of 
absence or background data (also called pseudoabsences) to contrast the 
presence data. The selection of these background points (number, 
location) requires particular attention, as it significantly influences the 
model output (Chefaoui and Lobo, 2008; Phillips et al., 2009; Barve 
et al., 2011; Barbet-Massin et al., 2012; Fourcade et al., 2014). The 
presence data, collected opportunistically by different people at 
different times, are spatially biased. Spatial sampling bias often occurs in 
the absence of a predefined sampling scheme because data are collected 
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in areas that are, for example, easily accessible or that have a higher 
potential of observations (Isaac and Pocock, 2015). To reduce this 
problem, we first eliminated redundant presence points (data thinning, 
Steen et al., 2021). Then, we sampled the background using an equal- 
stratified design to ensure their even distribution along the main envi-
ronmental gradients (Hirzel and Guisan, 2002, Appendix B). We divided 
the study into 5 strata for the predictor elevation and 5 for the predictor 
topographic position index (in total: 25 strata). Since a large number of 
background points is generally advised (Barbet-Massin et al., 2012), we 
generated a total of 10,000 points with this strategy (400 per strata). In 
the absence of evidence of historical constraints to dispersal and 
accessibility, we sampled them across the whole study area. 

2.3. Environmental predictors 

We used 13 environmental predictors gathered from different sour-
ces (Table B2). Most predictors are based on the digital elevation model 
(DEM), calculated with different algorithms. They can be considered 

proxies at the local scale for temperature, insolation, runoff rate, soil 
water content, erosion potential, terrain morphometry, exposure to 
wind, soil thickness, etc. (Pouteau et al., 2012; Lannuzel et al., 2021), 
which all influence the vegetation (Wilson and Gallant, 2000). Other 
predictors were also used: an index indicating the abundance of visible 
stones and rock at the ground surface, the normalized difference vege-
tation index (NDVI) and land cover. More information about predictors 
can be found in Appendix B. All predictors were upscaled to 10 m (native 
resolution was between 0.25 and 10 m). Forested and constructed areas 
were excluded from the study area for modeling (Fig. 1). 

Multicollinearity is assumed to be an important source of model 
uncertainty, and it is safer to avoid selecting highly correlated predictors 
(Braunisch et al., 2013; Guisan et al., 2017). We looked at correlations 
between predictors (r-squared values). The variance inflation factor 
(VIF) was also computed using the USDM R package (Naimi et al., 2014). 
Some predictors were eliminated to obtain VIF scores below 10 and 
Pearson r values below 0.7, which are generally considered acceptable 
thresholds (Dormann et al., 2013; Guisan et al., 2017). 

Fig. 1. Map of the study region: southern part of the canton of Fribourg, Switzerland. a) Overall situation, b) topography, and c) land cover. Only white areas (open 
lands) were considered for modeling. 
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2.4. Models 

Three different algorithms were used for habitat suitability 
modeling. The computation was performed in R (R Core Team, 2018): 
(1) general linear models (GLMs), (2) general additive models (GAMs), 
and (3) Maximum entropy (MaxEnt). The two first are standard popular 
regression techniques used since long for modeling species distributions 
(Guisan and Zimmermann, 2000). They are generalizations of ordinary 
linear regression that allow any probability function to be considered for 
the response and the linear predictor to be related to the response var-
iable via a link function (Guisan et al., 2002; McCullagh and Nelder, 
2019). To compute our GLM, we used linear and quadratic terms. GAMs 
are GLMs in which the polynomial functions between the response and 
covariates are replaced by several nonlinear smooth functions to model 
and capture the nonlinearities in the data (Guisan et al., 2002; Wood, 

2017). GAMs were computed with the ‘gam’ R package (Hastie, 2019) 
using a smoothing spline with 4 degrees of freedom. For both regression 
techniques, the logistic function (logit) was used as the link function. 
Equal weighting for presence and background was used (Barbet-Massin 
et al., 2012). For each model, the relevant predictors were selected by a 
stepwise procedure based on the Akaike information criterion (Saka-
moto et al., 1986). The third algorithm, MaxEnt, is often described as a 
machine-learning technique (Phillips et al., 2006; Elith et al., 2011), yet 
was shown to be a well-tuned and optimized GLM (and thus also a 
regression) with hindge functions and lasso penalization (Renner and 
Warton, 2013). It is available through the ‘dismo’ R package. MaxEnt 
has become a popular technique due to its excellent performance and 
accessibility (Elith et al., 2006). We used default settings (MaxEnt 
V.3.4.4), except that background points were sampled as described 
before instead of randomly. 

Fig. 2. Examples of habitats selected for modeling in 
the study area: a) Alpine swards and heaths on exposed 
ridges and peaks (ridge of the Kaiseregg, ca. 2100 m a. 
s.l.), b) example of a constant species: Tephroseris 
capitata, c) unstable calcareous screes (Dent de Ruth, 
ca. 1800 m a.s.l.), d) example of a characteristic 
species: Papaver occidentale, e) dry alpine and subal-
pine calciphilous stepped grassland (Dent de Brenleire, 
south face, ca. 1700 to 2300 m a.s.l.), f) example of a 
constant species: Leontopodium alpinum, and g) and h) 
consequences of overgrazing (summit and ridge of 
the Hochmatt, ca. 2100 m a.s.l.), with visible traces of 
erosion and modification of the typical flora (spread 
of nitrophilic and unpalatable species such as Cirsium 
spinosissimum and Urtica dioica).   
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2.5. Evaluation 

In the absence of a truly independent presence-absence dataset, two 
different cross-validation methods were used to evaluate the models. 
First, a standard k-fold cross-validation was performed, with 5 folds 
(Guisan et al., 2017). The data were randomly divided into 5 partitions, 
with 20 % of the data in each group (presence and background). Four 
partitions were used for model training, the left-out partition was used 
to test the model, and this procedure was repeated 5 times until each 
partition served for testing. This method is, however, known to generally 
lead to overoptimistic evaluations This method is, however, known to 
generally lead to overoptimistic evaluations when the training and 
testing datasets are spatially correlated (Roberts et al., 2017). We 
therefore also used a spatially blocked strategy to create spatial parti-
tions, thanks to the ‘BlockCV’ R package (Valavi, 2019). The study area 
and data (presence and background) were split into square blocks and 
distributed to create 5 partitions. Then, the procedure was the same as 
for the standard 5-fold cross-validation. The spatialAutoRange function 
of the ‘BlockCV’ R package was used to look at the existing autocorre-
lation in the predictors. As some important predictors showed a high 
spatial autocorrelation in the studied area (e.g. elevation), the blocks 
were dimensioned to be the largest as possible. We therefore used 10 km 
× 10 km blocks (study area of about 30 km × 40 km). 

Different metrics were used to evaluate model discriminating ca-
pacity with cross-validation testing datasets (the reported value in the 
results is always the mean of the 5 folds): area under the receiving 
operating characteristic curve (AUC), maximum of the true skill statistic 
(Max-TSS), point biserial correlation (COR), sensitivity (Sens.), pseu-
dospecificity (Spec.), symmetric extremal dependence index (SEDI) and 
Boyce index. References and additional information for all these metrics 
can be found in Appendix B. For comparison, all metrics were also 
computed for the Bioclim model, a simple envelope model that uses the 
mean and standard deviation for each environmental variable to 
calculate bioclimatic envelopes and uses only presence data (Guisan 
et al., 2017). For assessment, the metrics were calculated for geographic 

null models (Hijmans, 2012), a simple model based on the assumption 
that the closer to a known presence point, the more likely it is to find 
another presence point (inverse distance weighting). The Schoener’s D 
metrics (Warren et al., 2010) was calculated to quantify the degree of 
overlap of the different habitats. The value ranges from 0 (no overlap) to 
1 (identical model projections). 

3. Results 

Characteristic and constant species were selected for each habitat 
and their occurrences pooled as presence points for modeling (Table B1). 
For example, 21 species were selected for vegetated snow-patches (193 
presence data) and up to 57 species for dry alpine and subalpine calci-
philous stepped grasslands (627 presence data). 

The performances of the different models were measured using a 5- 
fold block cross-validation (Table 1) or a standard 5-fold cross- 
validation (Table C1). Hereafter, we refer to the metrics obtained with 
the 5-fold block cross-validation strategy, which we judged as more 
relevant to assess true model performance, with less spatial sorting bias. 
Other information on the models can be found in Appendix C, in 
particular the R outputs of the different models, including for example 
the significance of the different predictors in GLM and GAM, or their 
contribution in MaxEnt (Fig. C1). 

Overall, the evaluation metrics were close for GLM, GAM and Max-
Ent and clearly better than geographic null models or the simple Bioclim 
models (Table 1). However, MaxEnt performed slightly better for all 
habitats, according to most metrics (AUC, Max-TSS, COR, and SEDI). 
Only rarely did the GAM outperform MaxEnt for some metrics, but the 
difference was minimal. The sensitivity of MaxEnt was generally good, 
similar to other models, but with a smaller predicted “suitable area”, 
which indicates that MaxEnt performed generally better in terms of 
accuracy and specificity. Only the Boyce index sometimes classified 
MaxEnt significantly worse than the GLM and GAM. Therefore, as the 
metrics for MaxEnt were overall better, hereafter we mainly report re-
sults with this technique. 

Table 1 
Metrics for the different models (GLM, GAM, and MaxEnt), including for comparison geographic null models (NULL) and Bioclim models, for the five selected habitats, 
with the block 5-fold cross-validation strategy: area under the receiving operating characteristic curve (AUC), maximum of the true skill statistic (Max-TSS), point 
biserial correlation (COR), sensitivity (Sens.), pseudospecificity (Spec.), symmetric extremal dependence index (SEDI), and Boyce index. The proportion of the area 
projected as “suitable” (habitat suitability > threshold that maximizes TSS) is also indicated. The values are the mean obtained from the testing dataset for the 5 cross- 
validation folds. The metrics of the standard k-fold cross-validation are available in Appendix C (Table C1).  

Habitat Model AUC Max-TSS COR Sens. Spec. SEDI Boyce 
index 

Suitable area 

Block 5-fold CV 
Alpine swards and heaths on exposed ridges and peaks NULL  0.49  0.01 NA  0.62  0.39  0.01  − 0.49 0.69 % 

Bioclim  0.77  0.47 0.15  0.77  0.70  0.62  − 0.23 8.76 % 
GLM  0.89  0.69 0.25  0.92  0.77  0.84  0.85 4.49 % 
GAM  0.90  0.72 0.25  0.91  0.81  0.86  0.78 4.36 % 
MaxEnt  0.90  0.71 0.30  0.89  0.81  0.85  0.81 3.38 % 

Unstable calcareous screes NULL  0.57  0.19 NA  0.84  0.35  0.30  − 0.46 0.73 % 
Bioclim  0.73  0.41 0.12  0.76  0.65  0.56  − 0.37 15.42 % 
GLM  0.84  0.59 0.19  0.84  0.75  0.75  0.61 6.59 % 
GAM  0.86  0.63 0.20  0.88  0.75  0.78  0.62 7.93 % 
MaxEnt  0.87  0.64 0.22  0.88  0.76  0.80  0.17 6.66 % 

Dry alpine and subalpine calciphilous stepped grassland NULL  0.65  0.30 0.13  0.46  0.83  0.44  − 0.73 3.65 % 
Bioclim  0.64  0.26 0.11  0.65  0.61  0.36  0.41 22.69 % 
GLM  0.70  0.34 0.16  0.77  0.57  0.48  0.80 18.38 % 
GAM  0.79  0.48 0.24  0.83  0.64  0.64  0.91 19.85 % 
MaxEnt  0.80  0.51 0.28  0.80  0.71  0.67  0.88 16.81 % 

Subalpine mesophile calciphilous closed grasslands NULL  0.59  0.24 0.07  0.60  0.65  0.34  − 0.61 2.69 % 
Bioclim  0.73  0.38 0.18  0.76  0.61  0.52  − 0.10 20.40 % 
GLM  0.79  0.48 0.22  0.74  0.73  0.63  0.82 16.22 % 
GAM  0.82  0.53 0.25  0.86  0.67  0.70  0.87 21.65 % 
MaxEnt  0.84  0.55 0.30  0.89  0.65  0.72  0.80 21.98 % 

Vegetated snow-patches NULL  0.50  0.02 NA  0.64  0.38  0.03  − 0.29 0.88 % 
Bioclim  0.77  0.51 0.10  0.84  0.67  0.67  − 0.62 8.18 % 
GLM  0.88  0.68 0.18  0.90  0.77  0.83  0.78 6.12 % 
GAM  0.89  0.68 0.19  0.84  0.84  0.83  0.79 5.15 % 
MaxEnt  0.88  0.69 0.22  0.86  0.84  0.84  0.37 3.32 %  
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The different metrics indicated that the habitat Alpine swards and 
heaths on exposed ridges and peaks can be modeled with a good degree of 
reliability and the higher reliability among the other habitats considered 
in this study. In the block cross-validation and using a threshold that 
maximizes TSS, the sensitivity reached 0.89, while the (pseudo) speci-
ficity was 0.81. The models of the two further habitats, unstable calcar-
eous screes (sensitivity: 0.88, specificity: 0.76) and vegetated snow patches 
(sensitivity: 0.86, specificity: 0.84), were also satisfying. These results 
were moreover obtained with a relatively small predicted “suitable 
area”, between 3 and 6 % of the total study area. 

Lower metrics were obtained with the two following habitats: dry 
alpine and subalpine calciphilous stepped grassland (sensitivity: 0.80, 
specificity: 0.71) and subalpine mesophile calciphilous closed grasslands 
(sensitivity: 0.89, specificity: 0.65). The sensitivity was good; however, 
the models predicted very large suitable areas (17 and 22 %, 
respectively). 

MaxEnt models were used to generate predictions over the entire 
study area (Fig. 3, Appendix C). The three models with the best metrics 
pointed to very localized areas (see, for example, Fig. 4 with vegetated 
snow patches), which were determined as overall geographically and 
ecologically relevant. On the other hand, the models for the two habitats 
dry alpine and subalpine calciphilous stepped grassland and subalpine mes-
ophile calciphilous closed grasslands seemed visually to lack accuracy, 
with approximately 20 % of the total area predicted as suitable. More-
over, there was a large overlap between the predictions of these two 
habitats, with a Schoener’s D of 0.75 (Table C2). 

4. Discussion 

The present paper demonstrate the ability of HSM to be used for 
habitat mapping at high resolution for conservation purposes, and cor-
roborates with recent studies carried out both in alpine and lowland 
areas (Vincent et al., 2019; Ramel et al., 2020; Lannuzel et al., 2021; 
Oliveira et al., 2021). The main novelty of our approach lies in the fact 
that we use modeling not with a single species, but with a group of 
characteristic species in order to map habitats of high conservation 
value. Among the five selected habitats, the rarest and probably the most 
sensitive to overgrazing were also the most reliably modeled in our 
study: alpine swards and heaths on exposed ridges and peaks, unstable 
calcareous screes and vegetated snow patches. For those, prediction maps 
can be used as a planning tool, and we hereafter give some recom-
mendations on how to transmit these kinds of outputs to regional or 
political authorities, and the implications for practitioners to improve 
grazing management. It seems useful to discuss first, some aspects of 
modeling. 

4.1. Pooled presence data 

For all species selected as characters or constants for a habitat, the 
occurrence data were pooled together to serve as a single presence 
dataset for modeling. To our knowledge, this is the first time that this 
strategy has been used and evaluated to model alpine habitats at such a 
fine resolution (10 m). A similar approach was used to highlight areas 
with potential ecological quality according to different ecological 
groups at the national scale in Switzerland at a coarser resolution of 100 
m (Petitpierre et al., 2021). HSM is generally used for single species, but 
the predictive approaches can be used to model any biological entity 
(Guisan et al., 2017), for example, in our case, a part of a community, 
including species that share part of their realized niches. It has been 
suggested that for functionally close species, expanding the niche 
concept to the whole group may be practically relevant (Hirzel and Lay, 
2008), although formally an ensemble of species does not constitute a 
population, which is a key concept behind the niche theory (Pulliam, 
2000). However, this approach is not without limitations. It reflects the 
current state of these plant communities and their species interactions 
and thus could be problematic in using for projections in the future 

where species interactions will likely change (Wisz et al., 2013; D’Amen 
et al., 2017; Trisos et al., 2020). Moreover, the species selection for a 
given habitat, based on literature and expert knowledge, cannot be fully 
objective. Finally, the ecological amplitude slightly varies among 
selected species and accordingly the realized niches does not overlap 
exactly. If some species with broader ecological niches are selected, the 
suitable areas for the entire habitat type could be overestimated, and the 
choice of species should therefore be done carefully. Nevertheless, an 
important advantage of this strategy is the greater sample size enabled 
by grouping several species, which is a very important condition for 
good model performance (Wisz et al., 2008). 

4.2. Model performance 

MaxEnt was the most high-performing algorithm, but the metrics 
and predictions of the GLM and GAM were overall close and could be 
used as an alternative, or an ensemble modeling approach could also be 
used (Meller et al., 2014). The default parametrization of MaxEnt was 
appropriate in our study, although it is worth to check if better model 
parametrization are possible by using automated protocols, for example 
the ENMeval or kuenm R package (Muscarella et al., 2014; Cobos et al., 
2019). 

We argue the importance of making cross-validations using spatial 
blocks, as standard cross-validation usually leads to overoptimistic re-
sults (Table C1). With data collected without a predefined sampling 
scheme, spatial autocorrelation between training and testing datasets 
generally occurs when a standard k-fold cross-validation is used, and 
therefore indicates high model performances, even for geographical null 
models. Cross validation using spatial blocks gives a better view of the 
true model performance (Roberts et al., 2017), yet it can sometimes also 
be problematic if occurrences are for example geographically restricted 
to a single area covering only a very few partitions, which was however 
not the case here. 

Objectively assessing the performance of a presence-only model is 
difficult (Hirzel et al., 2006; Leroy et al., 2018), but the calculation of 
different metrics gave valuable insight in our case. For habitats that only 
occur over small areas, we found it particularly useful to compare the 
percentage of predicted “suitable area” and the sensitivity (true positive 
rate) with the block cross-validation. For example, considering the 
habitat Alpine swards and heaths on exposed ridges and peaks and the 
MaxEnt model, only 3.4 % of the total area was projected as suitable, 
and on average, 89 % of the presence points were correctly predicted in 
the testing block, which indicated good accuracy. On the other hand, the 
model for the habitat subalpine mesophile calciphilous closed grasslands 
predicted correctly 80 % of the presence points in the testing blocks, 
which is correct, but lacks specificity with more than 20 % of the total 
area predicted as suitable. 

Most metrics (AUC, Max-TSS, COR, and SEDI) were largely corre-
lated and consistent between them. The Boyce index was surprisingly 
worse for MaxEnt models in some cases. It is an interesting metric for 
presence-only models, but it must be interpreted with caution, as it 
seems very sensitive when testing presence is missing toward the higher 
prediction values. It is important to compare different metrics and, 
above all, to determine the ecological and geographic relevance of the 
model predictions. 

4.3. Model predictions 

The predictions of the different modeled habitats tended to overlap 
in some areas (Fig. 3). This could at first sight be seen as incoherent but 
in fact largely corresponds to the field reality. The different habitats can 
often change gradually or form mosaics. For example, in the study re-
gion, crests are home for species of alpine swards but generally together 
with species of alpine calciphilous stepped grassland or sometimes other 
habitats such as snow patches. From a conservation perspective, this 
overlap is not a problem because we do not want to map only the typical 

Y. Fragnière et al.                                                                                                                                                                                                                               



Biological Conservation 274 (2022) 109742

7

Fig. 3. MaxEnt model predictions for the five selected habitats: a) alpine swards and heaths on exposed ridges and peaks, b) unstable calcareous screes, c) dry alpine and 
subalpine calciphilous stepped grassland, d) subalpine mesophile calciphilous closed grasslands, and e) vegetated snow patches. Example in the mountain chain between 
Brenleire (Br.), Vanil Noir (V.N.), Vanil de l’Ecri (V.E.) and Pointe de Paray (P.P.), canton of Fribourg, Switzerland. The left panel shows 2D maps, and the right panel 
shows 3D views. The symbols in the maps show the position and angle of view for 3D views. 
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habitats (e.g., as defined in Delarze, 2015), and those forming transi-
tional stages (i.e., in-between the typical ones) are also worth 
conservation. 

The model for the habitat alpine swards and heaths on exposed ridges 
and peaks obtained the best evaluation metrics. Topographic position 
and elevation play a crucial role for that habitat (Delarze, 2015), it could 
therefore be well modeled mainly thanks to predictors like elevation and 
wind index. The projection seemed relevant to what can be expected in 
the field, pointing precisely exposed crests and summits at high eleva-
tion. Metrics and prediction for unstable calcareous screes and vegetated 
snow patches were also good. We noticed however a few problems with 
the first, as north exposed screes were projected as more suitable than 
south exposed screes, likely because our dataset was dominated by oc-
currences of cold adapted species, in particular Papaver occidentale 
(Fragnière et al., 2020). This highlights possible bias of such “pooling” 
method when a species dominates in the dataset. It is very conclusive to 
compare visually the projection of vegetated snow patches with late spring 
remaining snow patches (Fig. 4). We were able to find a recent ortho-
photo taken at the “right time”, which provided a further ground vali-
dation of our predictions. The projections of the two last habitats, dry 
alpine and subalpine calciphilous stepped grassland and subalpine mesophile 
calciphilous closed grasslands, were less accurate, with more than 20 % of 
the total study area predicted as suitable. Although these two habitats 
are more widespread, this nevertheless seems overoptimistic. Additional 
information is given in Appendix C. 

Overall, habitats that were clearly linked with one or a few envi-
ronmental predictors (e.g., elevation, topographic position, and stones 
on the soil surface) obtained both the best metrics and ecologically and 
geographically relevant predictions. Finding or developing appropriate 
ecologically-meaningful predictors (Mod et al., 2016) thus plays a 
crucial role for good model performance and transferability (Regos 
et al., 2019). 

4.4. Perspectives and recommendations 

In order to avoid the possible consequences of overgrazing, it is 
helpful to quantify the livestock carrying capacity of a specific area 

(García-González, 2008). The Swiss federal government has put in place 
several instruments to regulate land use, including the Ordinance on 
Direct Payments in Agriculture (Conseil fédéral, 2013), which specifies 
some grazing restrictions (maximum livestock load) in some habitats or 
areas by grazing management types (free, rotating or guarded) with the 
aim to favor biodiversity. The cantons are responsible for implementing 
this legal framework but need maps showing which areas do not have to 
be grazed or with a reduced load. Model predictions, along with other 
data such as elevation, were accordingly used to translate the federal 
legal basis onto maps for all open surfaces above 1500 m a.s.l. of the 
canton of Fribourg (Appendix D).Although habitat suitability models 
represent potentially powerful tools to support conservation decisions 
(Guisan et al., 2013), and especially land planning (Tulloch et al., 2016), 
we do not recommend providing spatial predictions for direct use by 
practitioners or decision-makers, but rather to first examine them and, if 
necessary, make appropriate improvements whenever possible or 
discard them otherwise until better predictions are obtained (e.g., when 
new predictors become available). Some small inconsistencies in model 
predictions are almost inevitable and can sometimes be simply adjusted 
by expert knowledge. Other approaches could also be used to model and 
spatially predict these plant communities, such as by stacking spatial 
predictions of individual species models (D’Amen et al., 2017). 

To evaluate the model, we used the threshold that maximizes TSS, 
but it is not necessarily the best threshold for conservation purposes 
(Huggett, 2005; Liu et al., 2013) and threshold independent evaluations 
of plant communities are also possible (Scherrer et al., 2020). If a 
threshold must be used to derive simpler predictions for practitioners, 
the optimal one should be discussed with the concerned parties or a way 
should be found to help them use the continuous prediction maps (e.g. 
habitat suitability) directly. In all cases, it is important to provide pre-
dictions maps that are understandable and easy to read and understand 
by end-users, e.g. with the gradient of habitat suitability divided into a 
few meaningful classes for their intended use. 

5. Conclusion 

Our study supports the ability of HSM to predict habitats of high 

Fig. 4. Comparison between a) model prediction (MaxEnt) for the habitat vegetated snow patches, and b) satellite image (Google, 2020), captured in late spring 
(19.05.2020) when some snow remained. Example in the region of the Vanil Noir, canton of Fribourg, Switzerland. 
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conservation value at a local scale using fine-resolution predictors and 
presence data from existing databases. With increasing access to precise 
species occurrences data and high-resolution environmental predictors, 
HSM could undoubtedly become a powerful tool in this context. 

Plant communities in mountainous ecosystems are dependent on a 
grazing regime, both ecologically and economically sustainable. The 
methodology used in our paper could be replicated in other areas con-
fronted with overgrazing and serve as basis for development of local 
maps of authorized grazing pressure and to apply management recom-
mendations, for example of Natura 2000 habitats (European Commis-
sion, 2008). Fine-scale habitat modeling has at the same time an 
enormous potential in terms of nature conservation and landscape 
management in alpine areas, for example, regarding tourism (in-
stallations for skiing, trampling by hikers, etc.), or the planning of new 
natural reserves. 
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