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Abstract: The main aim of the present study has been the completion of genome size data for the
diverse arctic-alpine A. ciliata species complex, with special focus on the unexplored arctic taxon A.
pseudofrigida, the north-European A. norvegica, and A. gothica from Gotland (Sweden). Altogether,
46 individuals of these three Nordic taxa have been sampled from seven different regions and their
genome size estimated using flow cytometry. Three other alpine taxa in the A. ciliata complex (A.
multicaulis, A. ciliata subsp. ciliata, and A. ciliata subsp. bernensis) were also collected and analyzed for
standardization purposes, comprising 20 individuals from six regions. A mean 2c value of 1.65 pg of
DNA was recorded for A. pseudofrigida, 2.80 pg for A. norvegica, and 4.14 pg for A. gothica, as against
the reconfirmed 2c value of 1.63 pg DNA for the type taxon A. ciliata subsp. ciliata. Our results
presenting the first estimations of genome sizes for the newly sampled taxa, corroborate ploidy levels
described in the available literature, with A. pseudofrigida being tetraploid (2n = 4x = 40), A. norvegica
possessing predominantly 2n = 8x = 80, and A. gothica with 2n = 10x = 100. The present study also
reconfirms genome size and ploidy level estimations published previously for the alpine members of
this species complex. Reflecting a likely complex recent biogeographic history, the A. ciliata species
group comprises a polyploid arctic-alpine species complex characterized by reticulate evolution,
polyploidizations and hybridizations, probably associated with rapid latitudinal and altitudinal
migrations in the Pleistocene–Holocene period.

Keywords: arctic-alpine plants; Arenaria norvegica; Arenaria gothica; Arenaria pseudofrigida; flow
cytometry; ploidy
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1. Introduction

Closely related but disjunct arctic–alpine and boreo-montane taxa offer an excellent
model system for the study of the influence of polyploidy on evolution and biogeography
of plants, especially in the context of historical climate oscillation events [1,2]. These taxa
provide a unique opportunity to explore how polyploidy has shaped their evolutionary
trajectories and distribution patterns across changing climatic landscapes over time. Inves-
tigating their genetic diversity and adaptation strategies can deepen our understanding
of how plants respond to environmental shifts and inform conservation efforts in rapidly
changing ecosystems.

A classic example of such a group is the Arenaria ciliata L. species complex (Caryophyl-
laceae) comprising six herbaceous taxa with very similar morphology and ecology but with
divergent arctic–alpine distribution ranges and ploidy levels [3–6]. In a recent study of this
group, Kozlowski et al. [7] used flow-cytometry and genome size estimations to examine
ploidy levels in populations across the Alps and Jura Mountains of central Europe, where
four taxa occur in relatively close proximity, namely A. ciliata subsp. ciliata L., A. ciliata
subsp. bernensis Favarger, A. gothica Fr., and A. multicaulis L. [4,8], with special focus on
A. ciliata subsp. bernensis, an endemic plant occurring in the Swiss Northern Alps. The
focus of the present study is to expand and complete genome size investigation for taxa in
Northern Europe and the Arctic, where distribution ranges vary much more widely, and
often comprise disjunct populations in reproductively isolated locations.

Genome size is known to vary greatly across organism lineages, including within and
between plant groups [9]. This variability arises from a combination of processes leading
to, on one hand, duplications and increase in DNA amounts in the genome (particularly
polyploidization), and on the other, processes that filter duplications and eliminate DNA
(primarily via recombination), in response to both selective pressures and neutral drift
events [10]. Correspondingly, nuclear DNA amount and ploidy level are important biodi-
versity characters and play a significant role in the evolution of land plants, especially with
respect to processes of speciation [11–13]. As a result, significant recent research efforts
have focused on understanding the factors that shape genome size variation [14–16].

Recognizing the importance of this information in the context of understanding recent
diversification in the A. ciliata complex across the Euro-Arctic biogeographic region, we
focused our present work on genome size estimation in high-latitude taxa, using the same
flow cytometry method as in our previous work [7], for the three unstudied target taxa:
A. pseudofrigida (Ostenf. & O.C.Dahl) Juz. Ex Schischk. & Knorring and A. norvegica
Gunn., as well as the Scandinavian populations of A. gothica Fr. [17–19]. When applied
rigorously [20,21], flow-cytometry is established as a benchmark method for estimation of
genome sizes and DNA ploidy levels in plants (e.g., [14,22–26]), and provides a replicable
protocol for comparison of samples with varying collection, storage, preparation and
quantity variables [6]—an important consideration for the assembly of material from remote
locations. The present work aims to deliver a targeted synthesis of genomic, biogeographic,
and ecological information for three Nordic members of the A. ciliata species complex,
which have never previously been analyzed collectively.

Arenaria pseudofrigida was described as a distinct taxon (A. ciliata subsp. pseudofrigida)
in 1917 from Finnmark (Persfjorden, Vardø) in the far north of Norway, and was raised
to a species status by Russian botanists Boris K. Schischkin and Olga E. Knorring in
1936 [27]. Apart of the neighborhood of the locus classicus (where the taxon is still well
present), there are several isolated populations in Norway and Finland, numerous scattered
occurrences in continental European part of the Russian North (e.g., polar Ural), and on
several Russian arctic islands (e.g., Novaya Zemlya, Franz Joseph Land). Additionally,
the taxon occurs in Svalbard and in Eastern Greenland, where it is relatively frequent
(Figure 1) [5,18,28]. In Svalbard, hundreds of occurrences are known from three islands:
Spitsbergen (mainly along Isfjorden, Wijdefjorden, and Kongsfjorden), Edge Island, and
Prince Charles Foreland [19]. The most northern populations however, are known from
north-eastern Greenland, growing as far as 82◦30′ N [29].
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Figure 1. Habitats and morphology of the two most Nordic members of the Arenaria ciliata species 
complex. (A,B): Arenaria norvegica. (A) Reykholahreppur, Iceland; (B) Latrabjarg, Iceland. (C,D): 
Arenaria pseudofrigida, Traill Island, Karupelv, Greenland. Photos: (A,B): Gregor Kozlowski; (C,D): 
Sven Büchner. 

Arenaria pseudofrigida shares a common reproductive strategy typical for the A. ciliata 
species complex. It reproduces sexually via insect pollination (e.g., flies) but is also capable 
of selfing in the absence of pollinators. Dispersal is nominally quite restricted, as its seeds 
lack any specialized dispersal mechanisms, relying on wind motion and gravity to 
dislodge the 0.1–0.5 mm diameter seeds through the neck of the mature fruit capsule, 
which is indehiscent. Long-distance dispersal (without human influence) is most likely 
via transport in the digestive tract of birds [17,19]. 

Arenaria pseudofrigida is a specialist of gravelly ground, either along the coast (on 
raised beaches as on Figure 1D) or on glacial and alluvial deposits in valleys. In Svalbard, 
it is confined to circumneutral or alkaline soils. The taxon seems to be very tolerant to 
drought and wind abrasion [19] and is a typical element of the boreal and arctic base-rich 
scree and block fields (alliance Arenarion norvegicae Nordhagen 1935) [30]. The taxon was 
described as tetraploid, with 2n = 4x = 40 [18,19,31]. 

Arenaria norvegica was described by Johann Ernst Gunnerus at the end of the 18th 
century, from Laskenstad (isle of Steigen, Northern Norway) in his Flora Norvegica [18,32]. 
The taxon occurs in Iceland (Figure 1) and Norway, where it is quite frequent, as well as 
possesses scattered and partially extremely small and isolated populations in Sweden, 

Figure 1. Habitats and morphology of the two most Nordic members of the Arenaria ciliata species
complex. (A,B): Arenaria norvegica. (A) Reykholahreppur, Iceland; (B) Latrabjarg, Iceland. (C,D): Arenaria
pseudofrigida, Traill Island, Karupelv, Greenland. Photos: (A,B): Gregor Kozlowski; (C,D): Sven Büchner.

Arenaria pseudofrigida shares a common reproductive strategy typical for the A. ciliata
species complex. It reproduces sexually via insect pollination (e.g., flies) but is also capable
of selfing in the absence of pollinators. Dispersal is nominally quite restricted, as its seeds
lack any specialized dispersal mechanisms, relying on wind motion and gravity to dislodge
the 0.1–0.5 mm diameter seeds through the neck of the mature fruit capsule, which is
indehiscent. Long-distance dispersal (without human influence) is most likely via transport
in the digestive tract of birds [17,19].

Arenaria pseudofrigida is a specialist of gravelly ground, either along the coast (on raised
beaches as on Figure 1D) or on glacial and alluvial deposits in valleys. In Svalbard, it is
confined to circumneutral or alkaline soils. The taxon seems to be very tolerant to drought
and wind abrasion [19] and is a typical element of the boreal and arctic base-rich scree and
block fields (alliance Arenarion norvegicae Nordhagen 1935) [30]. The taxon was described
as tetraploid, with 2n = 4x = 40 [18,19,31].

Arenaria norvegica was described by Johann Ernst Gunnerus at the end of the 18th century,
from Laskenstad (isle of Steigen, Northern Norway) in his Flora Norvegica [18,32]. The taxon
occurs in Iceland (Figure 1) and Norway, where it is quite frequent, as well as possesses
scattered and partially extremely small and isolated populations in Sweden, Finland, Shetland
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Islands, northern Scotland, western Ireland, and northern England [5,17,18]. The English
population is sometimes differentiated as a separated subspecies (A. norvegica subsp. anglica
Halliday), endemic to mid-west Yorkshire [17,33]. Arenaria norvegica is found on base-rich
sandy substrates and in fine scree and on riverside gravels (Figure 1) [5,17]. Similarly to A.
pseudofrigida, the species is also very resistant to drought and wind, being able to prosper, for
example, in the desert of lava, gravel and blown sand in the central plateau of Iceland [34].
According to the literature, it is an octoploid taxon with 2n = 8x = 80 [18,19,31].

Arenaria gothica, described from the isle of Gotland (Baltic Sea, Sweden) by Wahlen-
berg [35], was raised to a species rank by Fries [36]. Later, a similar form was discovered
in Switzerland, along the shore of the Lac des Joux [37] and was judged by Grenier [38]
to be conspecific with A. gothica Fr. In the second half of the 19th century, an additional
occurrence was found on the Swedish mainland (Kinnekulle, Västergötland) [39,40]. Are-
naria gothica has therefore an extremely disjunct distribution (distribution maps in [39]
and [40]), and its taxonomic position, putative origin and its glacial relict status is a subject
of controversy [33,40,41]. The ecology, particularity of the Swiss populations of A. gothica,
has been explored in detail in our recent work [7]. In Sweden the taxon occurs on chalk
and limestone, mainly in open habitat called alvar [40]. Alvars are almost level areas
that are only sparsely covered by vegetation of the order Alysso-Sedetalia (basiphilous dry
grasslands of shallow, skeletal soils), and are restricted to the Baltic islands of Sweden and
to Estonia [39,42]. The chromosome number from both disjunct regions was counted as
2n = 10x = 100 [7,40].

The aim of the present study was to complement our earlier work exploring alpine and
Jura Mountain taxa of the A. ciliata complex [7] and deliver the first evaluation of genome
size variation for yet unstudied taxa from Northern Europe and the Arctic. In this way,
the main focus of the present work is on A. pseudofrigida and A. norvegica, as well as on the
Swedish populations of A. gothica from Gotland. The following specific questions have been
addressed: (1) What are the differences in genome size among the three north-European
and arctic species of the complex, in comparison with closely related taxa occurring in the
Alps and neighboring mountain ranges? (2) Do the obtained results corroborate the ploidy
levels of the studied taxa known from the literature? Based on our results, the influence
of the ploidy level on the evolutionary and biogeography history of the A. ciliata species
complex will be discussed.

2. Results

The 2c values recorded for A. pseudofrigida were varying between 1.54 pg and 1.84 pg
of DNA (Figure 2, Table S1), with a mean 2c value of 1.65 pg (Table 1, standard deviation,
SD ± 0.11). The recorded genome size of A. norvegica was higher, with 2c values varying
between 2.68 pg and 2.89 pg of DNA, with a mean 2c value of 2.80 pg (SD ± 0.02). The
third Nordic taxon, A. gothica, displayed the highest recorded values, varying between
3.90 pg and 4.41 pg of DNA, with mean 2c value of 4.14 (SD ± 0.26). The higher SD-
values could be attributed to two different storage techniques of the plant material, as
explained in the Materials and Methods. Plant tissue desiccated with silica gel and stored
at room temperature showed higher 2c values (4.33 and 4.41) than duplicate samples stored
for a longer time at −20 ◦C (3.90 and 3.94). These differences are most probably due to
technical issues, and not natural variation among populations, as explained, for example,
by Sliwinska et al. [20].



Plants 2024, 13, 635 5 of 11

Plants 2024, 13, x FOR PEER REVIEW 5 of 10 
 

 

size is very stable, thus indicating an invariant ploidy level of all investigated individuals 
within a given taxon (Figure 2, Table S1). 

Table 1. Estimated ploidy level and genome size (mean ± standard deviation) in Arenaria ciliata 
species complex in the Arctic, Northern Europe, and the Alps. The genome size (2c values) is given 
in pg of DNA. The estimated ploidy level is based on comparison against all previously published 
2c values and chromosome counts (e.g., [6–8,18,19,33,40,41,43–45]). 

Taxon 2c Nuclear DNA Amount 
(pg DNA), Mean (± SD)  

Estimated 
Ploidy Level 

Nordic taxa:   
Arenaria pseudofrigida 1.65 (±0.11) 2n = 4x = 40 

Arenaria norvegica 2.80 (±0.02) 2n = 8x = 80 
Arenaria gothica (Gotland) 4.14 (±0.26) 2n = 10x = 100 

Alpine taxa:   
Arenaria multicaulis 1.50 (±0.06) 2n = 4x = 40 

Arenaria ciliata subsp. ciliata 1.63 (±0.06) 2n = 4x = 40 
Arenaria ciliata subsp. bernensis 6.77 (±0.03) 2n = 20x = 200 

 
Figure 2. Variation in genome size of four taxa in the Arenaria ciliata species complex analyzed in 
this study (2c values are given in pg of DNA). Box plots showing the quartiles, the 5th and 95th 
percentiles (whiskers) and the outliers. The number of analyzed individuals is indicated on the right 
of the plot. 

3. Discussion 
The study identified stable but varying genome sizes across different taxa studied 

within the A. ciliata species complex. It is composed exclusively of polyploid taxa, with no 
diploids. Polyploid species complexes play an important role in forming local floras [46]. 
The A. ciliata group is one of many polyploid arctic–alpine complexes characterized by 
reticulate evolution, polyploidizations and hybridizations. Well-studied similar com-
plexes exist elsewhere in the family Caryophyllaceae, for example, in the genera Cerastium 
[47] and Silene [48]. Polyploid species complexes are also observed in numerous other 
well-documented circumpolar, arctic–alpine, and alpine genera and families, for example, 
in Draba (Brassicaceae, [49]), Primula (Primulaceae, [50,51]) and Calamagrostis (Poaceae, 
[18,19,52]). 

Our present study, focused on north-European and arctic members of the A. ciliata 
species complex, completes genome size estimations initiated in Kozlowski et al. [7]. Alt-
hough allowing for the potential limitations of genome size estimations using flow 

Figure 2. Variation in genome size of four taxa in the Arenaria ciliata species complex analyzed in
this study (2c values are given in pg of DNA). Box plots showing the quartiles, the 5th and 95th
percentiles (whiskers) and the outliers. The number of analyzed individuals is indicated on the right
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Table 1. Estimated ploidy level and genome size (mean ± standard deviation) in Arenaria ciliata
species complex in the Arctic, Northern Europe, and the Alps. The genome size (2c values) is given
in pg of DNA. The estimated ploidy level is based on comparison against all previously published 2c
values and chromosome counts (e.g., [6–8,18,19,33,40,41,43–45]).

Taxon 2c Nuclear DNA Amount
(pg DNA), Mean (± SD)

Estimated
Ploidy Level

Nordic taxa:
Arenaria pseudofrigida 1.65 (±0.11) 2n = 4x = 40

Arenaria norvegica 2.80 (±0.02) 2n = 8x = 80
Arenaria gothica (Gotland) 4.14 (±0.26) 2n = 10x = 100

Alpine taxa:
Arenaria multicaulis 1.50 (±0.06) 2n = 4x = 40

Arenaria ciliata subsp. ciliata 1.63 (±0.06) 2n = 4x = 40
Arenaria ciliata subsp. bernensis 6.77 (±0.03) 2n = 20x = 200

Arenaria ciliata subsp. ciliata and A. multicaulis, both showed similar but much lower
values, with a mean 2c value of 1.63 (SD ± 0.06) for A. ciliata subsp. ciliata and a mean 2c
value of 1.50 (SD ± 0.06) for A. multicaulis (Figure 2, Table 1). The highest 2c values among
all the six taxa from the A. ciliata complex investigated in this study were recorded for A.
ciliata subsp. bernensis, varying between 6.51 pg and 7.02 pg of DNA, with a mean 2c value
of 6.77 pg (SD ± 0.03). The results show that, for all six taxa taken separately, the genome
size is very stable, thus indicating an invariant ploidy level of all investigated individuals
within a given taxon (Figure 2, Table S1).

3. Discussion

The study identified stable but varying genome sizes across different taxa studied within
the A. ciliata species complex. It is composed exclusively of polyploid taxa, with no diploids.
Polyploid species complexes play an important role in forming local floras [46]. The A. ciliata
group is one of many polyploid arctic–alpine complexes characterized by reticulate evolution,
polyploidizations and hybridizations. Well-studied similar complexes exist elsewhere in the
family Caryophyllaceae, for example, in the genera Cerastium [47] and Silene [48]. Polyploid
species complexes are also observed in numerous other well-documented circumpolar, arctic–
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alpine, and alpine genera and families, for example, in Draba (Brassicaceae, [49]), Primula
(Primulaceae, [50,51]) and Calamagrostis (Poaceae, [18,19,52]).

Our present study, focused on north-European and arctic members of the A. cili-
ata species complex, completes genome size estimations initiated in Kozlowski et al. [7].
Although allowing for the potential limitations of genome size estimations using flow
cytometry [20,21], this technique facilitates a synthesis of ploidy level variability within
the target arctic–alpine plant group. According to our results, the following three taxa
are predominantly tetraploid (2n = 4x = 40): the arctic A. pseudofrigida and the two alpine
taxa A. multicaulis and A. ciliata subsp. ciliata. Higher ploidy is observed in A. norvegica
(2n = 8x = 80) and A. gothica (2n = 10x = 100), and the highest confirmed ploidy level is for the
narrow endemic of Western Alps A. ciliata subsp. bernensis (2n = 20x = 200). These estimates
corroborate chromosome counts available in the published literature [18,19,33,40,41,43–45].
However, for some taxa of the present study, greater variability in ploidy has been doc-
umented in previous work, for example, for A. ciliata subsp. ciliata (2n = 40, 80, 120, 160,
200), but also for A. norvegica (2n = 60, 80) [6,8,44]. Abukrees et al. [6] showed that such
atypical chromosome counts could be detected in 12.5% of investigated individuals for
A. norvegica and in as much as 37% of investigated individuals for A. ciliata subsp. ciliata.
In contrast, the available literature and our results demonstrate a very stable ploidy level
in the remaining four taxa, namely A. pseudofrigida and A. multicaulis (both tetraplid), A.
gothica (decaploid) and A. ciliata subsp. bernensis (dodecaploid), and was this across the
whole investigated distribution area.

Our results thus confirm that there are no extant diploid taxa within the A. ciliata
species complex. The group comprises an example of a so-called mature polyploid complex in
the sense of Stebbins [53]. This is not an exception among arctic–alpine disjunct taxa. A
similar polyploidy pattern can be observed, for example, in the Cerastium alpinum/arcticum
species complex [47] and in the Calamagrostis stricta/neglecta group [19,52], where the lowest
chromosome number known is tetraploid (for Calamagrostis) or even octoploid (Cerastium).
In addition, the A. ciliata species complex confirms the conclusion of Brochmann et al. [1],
that almost 90% of arctic specialist plant taxa growing in regions that were heavily glaciated
during the last ice age, are polyploids.

Polyploidy is thought to infer fitness advantages allowing plants to adapt better to
more extreme climatic conditions [54], and in this scenario, it may not be surprising that
arctic and northern-latitude habitats include some of the most polyploid-rich floras [1].
In a related inference, it has been postulated that there is a general increasing gradient
of polyploidy with latitude (and altitude) [55]. This latter hypothesis is now refuted.
Stebbins [56] concluded, for example—by comparing polyploidy along the Pacific Coasts
of North America—that the highest frequency of polyploids occurs at between 52◦ and 54◦

north, declining to the north and south. Additionally, the majority of typical arctic polyploid
complexes (for example, in the genera Calamagrostis, Campanula, Chamaenerion, Salix, and
Saxifraga), reveal the presence of diploids at their northern distributional limits. Similarly,
the A. ciliata species complex explored in our study does not show a specific latitudinal
ploidy gradient, with the lowest chromosome numbers in high arctic A. pseudofrigida as well
as in the majority of high alpine populations of A. ciliata subsp. ciliata and A. multicaulis. It
is the case, however, that the highest ploidy types are only found at high elevation, near
the geographic center of diversity for the species complex.

The most plausible hypothesis explaining the high polyploid frequency in arctic–alpine
plants, is the so-called secondary contact hypothesis [56]. According to this hypothesis, “poly-
ploidy, accompanied by hybridization, is instrumental chiefly for rapid adaptation to new
ecological conditions, that become available relatively suddenly” [56]. Migration at the be-
ginning and the end of warm and cold periods is likely to be an important driver of ploidy
diversification, particularly for recently evolved polyploids [57], with multiple recurrence of
secondary contacts between previously separated closely related taxa [56]. Considering the
historical and current geographic ranges of A. ciliata complex taxa, including the proliferation
of extant populations in recently deglaciated regions of Europe and the Arctic, it is highly
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likely that secondary contacts played an important role in evolution of high polyploidy in the
A. ciliata species complex. Our study corroborates conclusions of Abukrees et al. [6], stating
that the A. ciliata complex arose from a reduced ploidy ancestral stock (2n = 40), probably in the
Alps, which after the latitudinal and altitudinal migration gave rise to several polyploidization
events. Arenaria ciliata subsp. bernensis (2n = 200), for example, is proposed to be an allopoly-
ploid neo-endemic taxon resulting from hybridization between different related taxa due to
rapid migration events after the last glaciation period (probably, in this case, of A. multicaulis
and A. ciliata subsp. ciliata) [4,7,45,58]. The genome size and, thus, also the ploidy level, is
stable across the whole distribution area of this taxon. The present study delivers additional
support for the taxonomic distinctiveness of the high alpine endemic A. ciliata subsp. bernensis,
which strongly aligns with other differences in morphology, phylogeny, phenology, ecology,
and plant communities, described previously. In affirming these differences, further support
now exists to re-consider the species status of this taxon. A similar allopolyploid origin after
the last glaciation was proposed for A. gothica (2n = 100), with A. norvegica (2n = 80) and
A. serpyllifolia subsp. leptoclados (2n = 20) as potential parents [33], or between A. multicaulis
(2n = 40) and A. serpyllifolia subsp. leptoclados [41]. In this way, ploidy and genome size data
from present study confirm that taxonomic and distributional differences among northern and
arctic taxa of the A. ciliata complex are likely reflecting a discrete genetic origin and migratory
history in each case.

4. Materials and Methods
4.1. Sampling of Plant Material

Most of the individuals of the A. ciliata species complex were recently collected in the
field, explicitly for this study. Arenaria pseudofrigida was collected in July 2023 (21 individu-
als from 2 regions in Northeast Greenland, Figure 3, Table S1). Plant material of A. norvegica
was sampled in June 2023, mainly in Iceland (21 individuals from 4 populations in western
Iceland, Figure 3, Table S1).

Additionally, one individual from Scotland (UK) was included in the analysis from
collections of one of the authors (C. Meade, Abukrees et al. [6]). Similarly, four individuals
of A. gothica collected previously from Gotland in Sweden were also included in the present
study. In addition, three alpine taxa of the A. ciliata species complex were collected in
August and September 2023 in the Swiss Alps: 11 individuals of A. ciliata subsp. bernensis
from 3 summit areas, 4 individuals of A. ciliata subsp. ciliata from 2 populations, and
5 individuals from one population of A. multicaulis (Figure 3, Table S1). The voucher
specimens are stored in the herbarium of the Natural History Museum Fribourg (NHMF),
Switzerland. None of these alpine populations and individuals were included in our
previous study [7]. Plant material (small portion of flowering stem with flowers) was
silica dried and kept for ca. 4 weeks in plastic bags prior to flow cytometry analyses. An
exception was the sole sample from Scotland (A. norvegica) and two samples of A. gothica
from Sweden which were desiccated and then stored at −20 ◦C prior to analyses. The
whole plant material was sent for analysis to the Plant Cytometry Services (Didam, The
Netherlands, www.plantcytometry.nl, accessed on 15 December 2023), a biological research
company specialized for ploidy and genome size analysis.

www.plantcytometry.nl
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Figure 3. Geographic position of collected sites with Arenaria ciliata species complex, with the
numbers of individuals sampled in the given area in parentheses. Red: A. pseudofrigida; blue: A.
norvegica; green: A. gothica; yellow: A. multicaulis; orange: A. ciliata subsp. ciliata; black: A. ciliata
subsp. bernensis.

4.2. Flow Cytometry Analysis

Approximately 1 cm2 of leaves of the Arenaria samples were mixed with 1 cm2 of
fresh leaves of the standard plants (Allium schoenoprasum, genome size 2c = 15.03 pg). This
was chopped with a sharp razor blade to release the nuclei in 100 µL of CyStain nuclei
extraction buffer (Sysmex, Norderstedt, Germany, https://eu.sysmex-flowcytometry.com,
accessed on 25 December 2023). The obtained suspension was then sieved through a 40 µm
filter, and 1.5 mL of CyStain PI (propidium iodide) absolute P staining buffer was added.
After one hour, the fluorescence of nuclei in the suspension was measured using a Sysmex
ploidy analyzer (Sysmex, Norderstedt, Germany). Each individual was analyzed once. The
number of nuclei measured for each sample was large enough in order to determine the
ploidy and ranged between 100 and 1000 nuclei per sample (Table S1). The use of higher
nuclei numbers would influence the genome size estimations by 1–2%. Ploidy level was
estimated based on comparison against all previously published 2c values and chromosome
counts (e.g., [6–8,18,19,33,40,41,43–45]), as well as on our own chromosome counting in the
A. ciliata species complex [7].

https://eu.sysmex-flowcytometry.com
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13050635/s1, Table S1: Characterization of all collected
taxa and samples from the Arenaria ciliata species complex, with the corresponding genome sizes
(2c values in pg of DNA and the nuclei number per analyzed sample). Figure S1: Examples of
histograms of genome size estimations using flow cytometry. A: Arenaria pseudofrigida from Traill
Island, Greenland. B: Arenaria norvegica from Latrabjarg, Iceland (Plant Cytometry Services, Didam,
The Netherlands, www.plantcytometry.nl, accessed on 15 December 2023).
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