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Abstract
Environmental factors such as mountain tectonic movements and monsoons can enhance genetic differentiation by hindering inter- and intra-

specific gene flow. However, the phylogeographic breaks detected within species may differ depending on the different molecular markers used,

and biological traits may be a major confounding factor. Pterocarya hupehensis is a vulnerable relict species distributed throughout the Sichuan

Basin. Here, we investigated the phylogeographic patterns and evolutionary history of P. hupehensis using chloroplast DNA and restriction site-

associated  DNA  sequencing  data  from  18  populations  around  the  Sichuan  Basin.  The  24  chloroplast  haplotypes  separated  into  western  and

eastern lineages at approximately 16.7 Mya, largely coincident with a strengthening of the East Asian monsoon system during the early to middle

Miocene.  Both  cpDNA  and  nuclear  DNA  datasets  consistently  identified  distinct  western  and  eastern  lineages  whose  phylogeographic  break

conformed to the boundary of the Sino-Himalayan and Sino-Japanese forest sub-kingdoms. However, in contrast to the nuclear gene data, the

cpDNA data revealed further divergence of the eastern lineage into northern and southern groups along the Yangtze River, a result that likely

reflects  differences  in  the  extent  of  pollen  vs  seed  dispersal.  During  the  temperature  decline  in  the  penultimate  (Riss)  glacial  period  of  the

Pleistocene epoch, P. hupehensis experienced a genetic bottleneck event, and ecological niche modeling suggests that a subsequent population

expansion occurred during the last interglacial period. Our findings not only establish a basis for conservation of this species, but also serve as a

case study for the effects of geography and climate change on the evolutionary history of wind-pollinated relict plants.
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 Introduction

The  distribution  and  genetic  structure  of  many  species
have  been  influenced  by  environmental  factors  such  as  mon-
soons,  mountain  tectonics,  and  other  historical/ecological
processes[1−3].  In addition, the presence of geographic barriers,
combined  with  species-specific  characteristics  such  as  disper-
sal  mode of  seeds  or  pollen,  can potentially  effect  the genetic
differentiation  of  species[4−6].  Thus,  understanding  phylogeo-
graphic  patterns  and  their  potential  influences  on  biomes  is  a
primary objective of conservation and evolutionary biology[1,7].

The  Sino-Japanese  Floristic  Region  (SJFR),  known  for  its
abundant diversity of temperate flora, has attracted significant
attention from phylogeographers and paleo-ecologists[8−10].  Its
high biodiversity is typically explained by the absence of conti-
nental  glaciation and a smaller magnitude of Quaternary envi-
ronmental  change[11].  The  Sichuan  Basin,  a  unique  geological
structure in East  Asia,  acts  as a mountain refuge for  numerous
relict  species[12−14].  The  phylogeographic  break  of  relict  plants
around  the  Sichuan  Basin  is  mainly  related  to  uplift  of  the

Qinghai-Tibet Plateau (QTP) during the late Pliocene, as well as
intensification of the East Asian monsoon system (EAMS)[15−17].
Climate  fluctuations  since  the  Miocene  may  also  have  been  a
key  determinant  of  the  differentiation  and  colonization  of
ancient taxa[18,19]. However, the dynamics of species around the
Sichuan  Basin  during  the  Miocene  climate  change—and  how
species  characteristics  and  geographic  barriers  affected  their
genetic patterns—remain poorly understood.

The  climate  of  Asia  has  changed  dramatically  since  the
Miocene[20−22].  Between  the  early  and  middle  Miocene,  the
pattern of aridity began to change from 'planetary' subtropical
to  'inland'[21],  and  this  was  followed  by  formation  and  domi-
nance of the monsoon climate[23,24]. This phenomenon is gene-
rally  explained  by  uplift  of  the  QTP[25,26] and  cooling  of  the
global  climate  during  the  middle  Miocene[27],  which  further
enhanced East Asian summer and winter monsoons during this
period (c. 15–10 Mya)[28−30].

Many  phylogeographic  studies  have  shown  that  several
post-Miocene  uplift  and  monsoon  events  are  related  to  the
genetic  structure  and  genetic  differentiation  of  plants[14,18,31].

ARTICLE
 

© The Author(s)
www.maxapress.com/forres

www.maxapress.com

mailto:cao101@shnu.edu.cn
mailto:cherish-faith@163.com
https://doi.org/10.48130/forres-0024-0005


Monsoons  can  also  strengthen  geographic  barriers  by  giving
rise to different climatic environments on either side of the bar-
rier, promoting the formation of lineage discontinuities, such as
the  'Tanaka–Kaiyong  Line'  (TKL)[32,33].  Abundant  summer  pre-
cipitation,  brought  about  by  strengthening  of  the  East  Asian
monsoon,  is  critical  to  the  development  and  maintenance  of
subtropical  evergreen  broad-leaved  forests  in  China[34,35].  Ari-
dity  is  also  an  important  factor  affecting  plant  distribution[36].
With uplift of the QTP and strengthening of the Asian monsoon
in the Early Miocene, inland drought began to occur and inten-
sify  in  Asia[31,37,38].  This  forced  plants  in  the  interior  of  Asia  to
retreat  southward  to  find  suitable  habitats  in  subtropical
regions with better hydrothermal conditions.

The  Sichuan  Basin,  which  is  located  in  the  second  step  of
China's  terrain,  is  surrounded  by  mountains.  These  mountains
exhibit complex geomorphological and climatic characteristics
that have created diverse habitats for relict species along steep
ecological  gradients[39,40].  Many  physical  and  ecological  bar-
riers,  such  as  mountains,  rivers,  and  climate,  are  believed  to
drive  population  diversification  and  speciation  around  the
Sichuan Basin[6,16].  Among the main phylogeographic  patterns
around the Sichuan Basin, the best-known is the 105°E line[6,41].
This  line  runs  longitudinally  across  the  Sichuan  Basin,  coinci-
dent  with  the  boundary  of  the  Sino-Himalayan  and  Sino-
Japanese  forest  sub-kingdoms,  dividing  taxa  into  eastern  and
western  lineages[13,42].  The  TKL  is  another  major  phytogeo-
graphic  boundary  that  traverses  the  mountains  in  the  south-
western Sichuan Basin[43].  In addition, the Yangtze River (Three
Gorges region) traverses the mountains in the eastern Sichuan
Basin,  forming  a  phylogeographic  break  that  divides  taxa  into
northern  and  southern  lineages[31,44].  Monsoons,  QTP  uplift,
mountains, and river basins have thus isolated biodiversity into
areas of endemism or created lineages by impeding gene flow
in dispersal-limited organisms[16,40,45].

Most  phylogeographic  studies  of  plants  in  East  Asia  have
used  chloroplast  molecular  markers[14,17,18,46,47].  Chloroplast
DNA  (cpDNA)  is  passed  down  by  uniparental  maternal  inheri-
tance in  most  angiosperms and is  transmitted by seeds alone,
thus  providing  no  pollen-related  information[48].  However,
pollen-mediated  gene  flow  may  dominate  in  wind-pollinated
trees[5,49].  Asymmetrical  gene  flows  mediated  by  pollen  and
seeds  have  been  consistently  demonstrated  in  phylogenetic
studies  of  many  temperate  tree  species[5,41,50].  Different  trans-
mission  characteristics  may  result  in  different  intraspecific
genetic  structures.  For  example,  inconsistencies  between
cpDNA  and  nuclear  DNA  of Juglans  cathayensis and Populus
lasiocarpa have been attributed to biological  traits  (e.g.  exten-
sive  pollen  exchange  and  wind-dispersed  seeds)  that  partly
delay  the  genetic  imprinting  of  long-term  isolation[5,6].  When
exploring the effects of past events on the evolutionary history
of taxa,  species-specific biological  characteristics should there-
fore be taken into account.

Pterocarya hupehensis is a tree species endemic to China that
is  found  in  mountainous  areas  (between  700  and  2,000  m
above sea level) around the Sichuan Basin[45,51,52].  It is a typical
riparian  relict  species  of  subtropical  evergreen  broad-leaved
forests[51]. P.  hupehensis is  monoecious,  producing  flowers  in
catkins  (amenta),  with  female  amenta  terminals  on  new
growth;  it  is  thus  a  typical  anemophilic,  cross-pollinated
species[53,54]. P. hupehensis has been assessed as vulnerable (VU)
and  is  considered  to  be  of  conservation  concern[52];  a  better
understanding of its  population genetics and phylogeography

can therefore guide appropriate protective actions. It is also an
excellent  case  study  for  investigating  potential  drivers  of
genetic  patterns  in  wind-pollinated  relict  species  around  the
Sichuan Basin.

Here,  we  used  cpDNA  and  restriction  site-associated  DNA
sequencing (RAD-seq) datasets to reconstruct the evolutionary
history  and  phylogeography  of P.  hupehensis.  We  then  per-
formed ecological niche modeling (ENM) to explore its suitable
habitats from the past to the future. In particular, we addressed
three questions.  First,  what  is  the genetic  structure of P.  hupe-
hensis populations around the Sichuan Basin? Second, how did
this species respond to climatic fluctuations from the Neogene
to the Quaternary periods? Third,  what evolutionary processes
contributed to the observed genetic patterns?

 Materials and methods

 Sampling and sequencing
Leaves were collected from 18 natural  populations covering

the  distribution  range  of P.  hupehensis around  the  Sichuan
Basin (Table 1).  Individuals in each population were at least 50
m  away  from  each  other,  and  156  individuals  were  sampled.
Fresh leaves were dried using silica gel, and DNA was extracted
from  the  dried  leaf  tissue  using  a  modified  CTAB  method[55].
After removal of samples with low-quality DNA, 141 individuals
were  selected  for  cpDNA  sequencing  and  122  individuals  for
RAD  sequencing  (Supplemental  Table  S1).  Voucher  specimens
of  each  individual  were  stored  at  the  Shanghai  Chenshan
Botanical  Garden  Herbarium  (CSH).  After  screening  previously
published  universal  primers,  six  cpDNA  loci  (psbD-trnT[56],
trnV(UAC)x2-ndhC[57], trnL(UAG)-rpL32-F[56], trnS-trnfM[58],
trnG-trnS[59],  and trnD-trnY[60])  were  selected  for  use  in  this
study.  PCR  amplification  was  performed  as  described
previously[61].  The  amplified  PCR  products  were  sequenced  by
Sangon Bioengineering Co., Ltd. (Shanghai, China).

 Chloroplast DNA sequence analysis
Chloroplast  DNA  sequences  were  assembled  and  checked

using  Sequencher  v4.1.4  (Gene  Codes  Corp.,  Ann  Arbor,  MI,
USA).  The  sequences  were  aligned  and  calibrated  using  Clus-
talW implemented in MEGA v11[62] and then manually calibrated
and  adjusted.  The  haplotypes  of  the  chloroplast  fragments
were  extracted  using  DnaSP  v6.0  with  default  parameters[63],
and  a  haplotype  distribution  map  was  constructed  using
ArcGIS  v10.2.  Haplotype diversity  (Hd)  and nucleotide diversity
(π)  were  calculated  with  Arlequin  v3.5[64].  Total  gene  diversity
(HT),  within-population  gene  diversity  (Hs),  and  population
differentiation  indices  (GST and NST)  were  calculated  using
PERMUT  v2.0[65].  The  Median  Joining  model  of  NETWORK
v10.2.0.0[66] was  used  to  construct  the  haplotype  network.
BARRIER  v2.2  was  used  to  detect  biogeographic  boundaries
evaluated  by  100  replicates  of  population  average  pairwise
difference matrices[67]. Analysis of molecular variance (AMOVA)
with  1,000  permutations  was  performed  to  examine  genetic
variation among and within populations using Arlequin v3.5[64].

BEAST  v2.5  was  used  to  estimate  chloroplast  haplotype
divergence  times  under  a  log-normal  relaxed  clock[68].  We
chose Juglans  regia as  an  outgroup[69].  On  the  basis  of  the
Akaike  information  criterion  (AIC)  implemented  in  Modeltest
v3.7[70], the HKY + I + G model was selected as the best alterna-
tive  model.  The  age  of  the  earliest  conclusive Juglans L.  fossil
was  used  as  the  minimum  age  to  constrain  the  stem  of  the
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haplotype  tree  (~50  Mya:  44.4–57.88  Mya)[71].  We  also  used
Pterocarya fraxinifolia and Pterocarya macroptera as outgroups,
and  the  age  of  the  earliest Pterocarya fossil  was  used  to
constrain  the  crown  group  (~30  Mya:  28–34  Mya)[51].  Markov
chain  Monte  Carlo  runs  were  performed  for  10  million  itera-
tions  with  parameter  sampling  every  1,000  generations.
Convergence was assessed using Tracer v1.7[72],  and the effec-
tive sample size (ESS) for all parameters was calculated. The first
20% of each run was discarded as burn-in using TreeAnnotator
v1.8 (http://beast.bio.ed.ac.uk/TreeAnnotator).  Mismatch distri-
bution analysis  and two neutrality tests,  Tajima's D[73] and Fu's
Fs[74],  were  performed  to  estimate  historical  demographic
expansions using Arlequin v3.5[64].

 RAD-seq data processing and analysis
 SNP calling and filtering

The  raw  reads  from  all  122  individuals  were  cleaned  to
remove reads with uncalled bases and low quality scores using
the  process_radtags  module  in  Stacks  v2.62[75].  The  process_
radtags  module  was  also  used  to  truncate  the  final  reads  to
120  bp.  The Pterocarya  stenoptera[76] reference  genome  was
indexed  with  BWA  v0.7.17[77],  and  the P.  hupehensis RAD
sequences were aligned to the indexed reference genome. The
'flagstat' command in SAMtools v1.16 was used to calculate the
mapping rates and read numbers[78].  The Stacks v2.62 pipeline
was used to process the RAD-seq reads[75]. The gstacks module
was used to identify single nucleotide polymorphisms (SNPs) at
each locus in the population and genotype each individual for
each  identified  SNP.  The  resulting  BAM  files  were  sorted  with
SAMtools[78].  The  populations  module  in  Stacks  was  used  for
data  filtering  and  SNP  calling  with  the  following  criteria:  (1)
greater  than  80%  of  individuals  in  each  population  were
processed  for  each  locus  using  the  parameter  'r  =  0.8';  (2)  the
maximum  observed  heterozygosity  was  set  to  0.7  with  the
parameter  'max-obs-het  =  0.7';  (3)  the  minimum  minor  allele
frequency (MAF) was set to 0.05; and (4) only the first SNP locus

of each read was retained to avoid physical linkage. The variant
dataset  was  then  filtered  for  missing  data  using  VCFtools
v0.1.16[79] with the parameter 'max-missing = 0.8'.

 Population structure and genetic diversity
Bayesian  clustering  was  performed  using  Admixture[80].  The

most  probable  values  of K for  explaining  population  structure
were  determined  using  the  lowest  cross-validation  (CV)  error
rate. R v4.1.0[81] was used to visualize the curve of the CV error
rate  from  one  to  ten  and  the  population  structure  histogram.
Population  structure  was  also  investigated  using  principal
component analysis  (PCA) for  122 individuals  with the R pack-
age 'adegenet'[82]. The optimal number of lineages was selected
on  the  basis  of  the  lowest  associated  Bayesian  information
criterion.  An  individual-based  maximum  likelihood  (ML)  tree
was  constructed using IQ-TREE v1.6.12[83] and contained three
outgroups: P.  macroptera, Cyclocarya  paliurus,  and Juglans
mandshurica[45].  The nucleotide diversity  (π),  the expected and
observed  heterozygosities  (HE and HO),  and  the  fixation  index
(Fis) among populations were calculated using the populations
module  in  Stacks.  AMOVA  was  performed  using  Arlequin
v3.5[64] to explore the degree of genetic differentiation among
lineages, populations within lineages, and populations.

 Population demographic histories
We  used  TreeMix  v1.13[84] to  infer  possible  hybridization

events among populations by obtaining allele frequencies from
multiple  populations  and  generating  a  ML  tree.  Migration
events  were  analyzed  from  one  to  ten  and  then  calibrated  on
the ML tree. The parameter '-noss' was used to prevent overcor-
rection.  We calculated the percent variance explained in order
to  judge  the  migration  events  using  the  script  'treemixVari-
anceExplained.R'.  We  set  the  program  to  use  10  migration
events for generation of the ML tree. The standard errors of all
entries  in  the covariance matrix  estimated from the data were
used to construct a heatmap. The migration tree and heat map
were visualized using R v4.1.0.

Table 1.    Sample codes, sample locations, and genetic diversity indices for 18 populations of Pterocarya hupehensis based on RAD-seq data and cpDNA
data.

Code Site Longitude
(°E)

Latitude
(°N)

RAD-SNPs cpDNA

n HO HE π Fis h π × 103 Haplotype (number
of individuals)

HH Xian, Shaanxi 107.93 33.87 6 0.199 0.173 0.203 0.007 0 0 H1 (10)
HXC Ankang, Shaanxi 109.49 32.72 3 0.207 0.165 0.209 0.004 0.42 0.005 H2 (1), H3 (1), H4 (7)
FLC Ankang, Shaanxi 109.4 31.95 5 0.192 0.143 0.174 −0.033 0 0 H5 (9)
DSP Baoji, Shaanxi 107.49 33.84 4 0.183 0.144 0.177 −0.013 0 0 H6 (8)
QDZ Nanyang, Henan 111.97 33.52 6 0.210 0.175 0.197 −0.027 0.39 0.004 H7 (7), H8 (2)
HKC Nanyang, Henan 112.02 33.57 6 0.193 0.184 0.209 0.033 0.5 0 H7 (6), H9 (3)
TSG Nanyang, Henan 111.72 33.63 6 0.182 0.171 0.198 0.031 0.33 0 H7 (5), H10 (1)
LJL Nanyang, Henan 111.70 33.63 4 0.191 0.164 0.207 0.027 0 0 H7 (4)
LYG Tianshui, Gansu 106.1 34.23 5 0.189 0.152 0.177 0.021 0 0 H1 (10)
YPC Longnan, Gansu 106.23 33.67 5 0.206 0.149 0.170 0.068 0 0 H11 (7)
HJG Kangxian, Gansu 105.51 33.39 5 0.184 0.141 0.162 0.041 0 0 H12 (7)
MYG Yangba, Gansu 105.74 33.03 6 0.191 0.170 0.196 0.010 0 0 H13 (6)
SNJ Shennongjia, Hubei 110.92 31.65 7 0.216 0.199 0.217 0.004 0 0 H14 (7)
XJZ Shennongjia, Hubei 110.58 31.59 11 0.209 0.209 0.220 0.033 0.47 0.067 H15 (7), H16 (3)
SHJZ Enshi, Hubei 109.8 30.16 11 0.206 0.179 0.194 −0.026 0.76 0.067 H17 (5), H18 (1), H19 (2),

H20 (1), H21 (1)
JSZ Nanchuan, Chongqing 107.14 29.02 7 0.213 0.212 0.223 0.029 — —
DFX Bijie, Guizhou 105.88 27.33 12 0.224 0.212 0.222 −0.001 0.36 0.004 H22 (8), H23 (2)
NYX Bijie, Guizhou 105.47 26.7 13 0.227 0.195 0.204 −0.047 0 0 H24 (10)
AVERAGE 0.201 0.174 0.198 −0.006 0.19 0.009

n,  the  number  of  samples  used  for  RAD-seq  analysis; HO,  observed  heterozygosity; HE,  expected  heterozygosity; π,  nucleotide  diversity; Fis,  inbreeding
coefficient; h, haplotype diversity.
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Fluctuations in effective population size were inferred using
Stairway Plot 2[85], which implements an unsupervised learning
strategy  for  model  selection  and  supports  both  folded  and
unfolded  site  frequency  spectra  (SFS).  The P.  stenoptera refe-
rence  genome  was  indexed,  and  unfolded  SFSs  were  gene-
rated  for  both  genetic  groups  and  total  populations  using
ANGSD v0.939[86]. The effective population size was inferred for
each  lineage  and  for  all  populations  using  a  mutation  rate  of
2.06 × 10−9 per locus per year (with reference to Juglans)[87] and
a  generation  time  of  30  years.  We  used  the  recommended
percentage  of  training  sites  (67%)  to  run  the  Stairway  Plot  2
program.  By  default,  200  input  files  were  created  for  each
estimation.

BEAST  v2.5[68] was  used  to  estimate  the  nuclear  genome
(RAD-seq)  divergence  time  for P.  hupehensis.  According  to  the
phylogeny of Juglandaceae, Cyclocarya paliurus and Pterocarya
macroptera were  used  as  outgroups[71].  We  used  the  oldest
fossil  of Cyclocarya to  calibrate  the  stem  age  of Pterocarya
(65–55  Mya)[51] and  the  oldest  fossil  of Pterocarya to  calibrate
the crown age of Pterocarya (34–28 Mya)[51]. MCMC chains were
run  for  50,000,000  generations  under  the  GTR  +  I  +  G  model
chosen  by  jModelTest[88].  Tracer  v1.7  was  used  to  evaluate
convergence  and  calculate  the  ESS  (http://tree.bio.ed.ac.uk/
software/tracer/).  The  first  30%  of  samples  were  discarded  as
burn-in using TreeAnnotator v1.8, and the phylogeny was visu-
alized  using  Figtree  v1.4.4  (http://tree.bio.ed.ac.uk/software/
Figtree/).

 Ecological niche modeling
The potential  distribution areas  of P.  hupehensis were  gene-

rated on the basis of all known distribution points using MAXENT

v3.4.4[89].  The  distribution  points  included  the  18  sampling
points  used  here,  as  well  as  distribution  records  from  the  Na-
tional  Specimen  Information  Infrastructure  (www.nsii.org.cn/)
and  the  Chinese  Virtual  Herbarium  (www.cvh.ac.cn).  We
deleted  points  corresponding  to  non-natural  populations
(parks,  urban  areas,  etc.)  using  a  coordinate  backcheck.  The  R
package  'dismo'[90] was  used  to  delete  missing,  duplicate,  and
incorrect  coordinates.  To  reduce  the  influence  of  spatial  auto-
correlation  on  climate  variables,  we  performed  grid  screening
to  remove  coordinate  points  less  than  2.5  arc-min  (~4.6  km)
apart using the R package 'raster'[91]. We acquired the standard
19  bioclimatic  variables  from  the  WorldClim  website  (https://
worldclim.org/)  at  a  2.5-arc-min  spatial  resolution[92] for  four
time  periods:  the  present  (1970–2000),  the  last  glacial  maxi-
mum (LGM, c. 21 kya)[93], the last interglacial period (LIG, c. 120
kya)[94],  and  the  2061–2080  period  under  the  representative
concentration  pathway  (RCP)  4.5  scenario.  We  used  the  func-
tion variance inflation factor (VIF) from the R package 'usdm'[95]

to remove environmental factors with correlation coefficients >
0.8.  The  following  environmental  factors  were  retained  as
predictors:  annual  mean  temperature,  mean  diurnal  range,
temperature  seasonality,  precipitation  of  wettest  month,
precipitation seasonality,  and precipitation of driest quarter.  In
total,  25% of the data were used for model testing and valida-
tion.  Ten  independent  replicates  were  analyzed  using  the
bootstrap method.  The average results  were used to reclassify
the suitable areas in ArcGIS v10.2.  The parameter for reclassifi-
cation had five levels, 0–0.08, 0.08–0.25, 0.25–0.5, 0.5–0.75, and
0.75–1,  indicating the degree of habitat suitability from low to
high.

 Results

 cpDNA sequence variation
The alignments of the psbD-trnT, trnV-ndhC, trnL-rpL32, trnS-

trnfM, trnG-trnS, and trnD-trnY sequences were 1,578, 709, 849,
1305,  1,524,  and 780 bp in  length,  respectively.  After  concate-
nation, the resulting 6,745 bp of chloroplast DNA sequence was
found  to  contain  91  polymorphisms  and  24  haplotypes  in  the
17 examined populations (Table 1, Fig. 1). The haplotype diver-
sity (Hd) and nucleotide diversity (π) of P. hupehensis were 0.929
and  0.00379,  respectively.  Population  SHJZ  had  the  highest
haplotype  diversity  (h =  0.76),  and  populations  XJZ  and  SHJZ
had the highest nucleotide diversity (π = 0.0067) (Table 1). Total
diversity (HT = 0.963) was much higher than the average within-
population  diversity  (HS =  0.189).  Significant  phylogeographic
structure  was  detected  among  the  populations  (GST =  0.804  <
NST =  0.969, P <  0.05).  The  BARRIER  analysis  revealed  genetic
barriers  between  the  eastern  and  western  lineages  (near  the
Qinling  Mountains  and  the  southern  105°E  line)  and  also
between  the  northern  and  southern  Yangtze  River  (Supple-
mental  Fig.  S1).  AMOVA  showed  that  75.05%  of  the  total
genetic  variation  occurred  between  the  two  lineages  (FCT =
0.75),  22.64%  occurred  among  populations  within  lineages
(FSC = 0.91), and only 2.31% occurred within populations (FST =
0.98; Table 2).

The  phylogenetic  network  resolved  two  main  haplotype
lineages with 30 step mutations (western and eastern lineages)
located in the eastern and western parts  of  the Sichuan Basin.
The eastern lineage was further divided into two clades (clades
II and III). Clade II included haplotypes from the eastern Sichuan
Basin  and  the  western  Qinling  population  (YPC).  Clade  III  was
composed mainly of haplotypes from the southeastern Sichuan
Basin (Fig. 1). The haplotype structures revealed by BEAST were
similar to the groupings revealed by the phylogenetic network.
The  haplotype  divergence  between  the  western  and  eastern
lineages  dated  to  the  middle  Miocene  (16.7  Mya),  and  clade  II
separated  from  clade  III  at  approximately  8.5  Mya.  The  crown
age of clade II was estimated at 5.3 Mya and that of clade III at
5.8 Mya (Fig. 2).

The values of Tajima's D and Fu's Fs were positive for P. hupe-
hensis (D =  0.675, P =  0.693; FS =  0.196, P =  0.626),  suggesting
no expansion of its distribution. Mismatch distribution analysis
showed  multimodal  distributions  for  all  samples,  also  sugges-
ting that this species has not undergone a recent demographic
expansion (Supplemental Fig. S2).

 Population structure and genetic diversity
We  obtained  87  million  RAD-seq  reads  from  122  samples.

The  average  alignment  rates  of  the  samples  to  the  reference
genome was 86.72% (Supplemental  Table S2).  After restricting
variants to those processed in > 80% of the individuals in each
population, 695,262 variant sites remained. After filtering, 2,427
and 2,889 SNPs with and without outgroups, respectively, were
obtained for subsequent analyses.

Admixture  analysis  revealed  that  the  genetic  structure  of P.
hupehensis consisted  of  two  lineages  (Fig.  3; Supplemental
Fig. S3). Populations located in the northwestern Qinling Moun-
tains, together with one population (NYX) from the southwest,
were  assigned  to  the  western  lineage.  The  eastern  lineage
included all populations from the eastern Sichuan Basin, as well
as  one  population  from  the  northwest  (YPC)  (Fig.  3a).  Genetic
introgression  was  detected  in  five  populations  (western
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lineages LYG, MYG, DSP, and HH and eastern lineage FLC) (Fig.
3a, c). The core populations of the eastern lineage always clus-
tered together when K = 2 to 5 (Supplemental Fig. S4). PCA also
divided  all  populations  into  two  lineages.  The  percentages  of
variation  explained  by  PC1  and  PC2  were  9.2%  and  3.9%,
respectively (Fig. 3). A ML tree showed that the eastern lineage
evolved earlier than the western lineage (Supplemental Fig. S5),
and  the  hybrid  populations  were  primarily  located  at  the
branch ends of the ML tree.

Genetic  diversity  of  nuclear  DNA  varied  among  populations
as  assessed  by HO (0.182–0.227), HE (0.141–0.212), π (0.162–
0.223),  and Fis (−0.047–0.068)  (Table  1).  Genetic  diversity  was
higher  in  the  southern  populations,  including  NYX,  DFX,  and
JSZ.  AMOVA  revealed  that  genetic  differentiation  occurred
mainly within populations (FST = 0.34, 66.31%; Table 2).

 Population demographic histories
The  migration  events  in  the  ML  tree  showed  two  strong

signals  with a  high migration weight,  indicating unidirectional

gene  flow  from  the  DFX  population  to  the  common  ancestral
populations  of  NYX  and  HJG  and  also  from  the  HJG  to  MYG
populations  (Fig.  4a).  Eight  other  gene  flow  signals  were  also
detected.  The  longest  horizontal  branch  was  that  of  the  MYG
population,  indicating  that  it  had  undergone  the  greatest
genetic  drift  compared  with  the  other  populations  (Fig.  4a,
Supplemental  Table  S3).  The  topology  of  the  genetic  relation-
ships  in  the  ML tree  was  consistent  with  the  results  of  Admix-
ture  and  IQ-TREE  analyses.  Stronger  introgression  events
among populations were shown by the residual heatmap than
by  the  ML  tree  inferred  with  Treemix  (especially  in  the  SHJZ,
YPC,  DFX,  and  QDZ  populations)  (Fig.  4a, b).  The  BEAST  result
based  on  the  phylogeny  from  the  RAD-seq  datasets  showed
that the western lineage separated from the eastern lineage at
16.78 Mya (95% HPD: 11.99–22.25 Mya) (Supplemental Fig. S6),
very similar to the divergence time of haplotypes between the
western and eastern lineages estimated from cpDNA data (16.7
Mya, 95% HPD: 11.8–21.9 Mya).

Fluctuations in the effective population size of P. hupehensis
were  estimated  to  have  occurred  from  approximately  1.0  Mya
in  the  Late  Pleistocene  (Fig.  4c).  Stairway  Plot  2  analysis
revealed  a  genetic  bottleneck  event  at  about  200–400  kya  in
which the effective population size dropped to about 1.4 × 104

to  2  ×  103 individuals.  The  effective  population  size  then
climbed to an upper limit of ~3.2 × 104 individuals at about 200
kya and remained steady between 120–140 kya during the LIG.
From the LGM period to the Holocene, effective population size
gradually  decreased to  its  lowest  level  of  0.1  ×  103 individuals
(Fig.  4c).  The  western  and  eastern  lineages  exhibited  similar
trends  in  population  size  fluctuation.  However,  the  bottleneck
event  occurred  slightly  earlier  in  the  western  lineage  than  in
the eastern lineage (Supplemental Fig. S7a, b).

 
Fig. 1    Distribution of 24 chloroplast haplotypes of Pterocarya hupehensis. The lower right panel shows the minimum spanning network of 24
chlorotypes.  Circle  sizes  are  proportional  to  the  number  of  samples  per  haplotype.  The  red  dashed  line  on  the  map  represents  the  Sino-
Himalayan/Sino-Japanese forest boundary. The black dashed line represents the phylogeographic break along the Yangtze River in the eastern
Sichuan Basin. The black dotted lines delineate three phylogroups with closely related chlorotypes.

Table 2.    Analyses of molecular variance (AMOVA) based on cpDNA data
and  RAD-seq  data  for Pterocarya  hupehensis from  western  and  eastern
lineages.

Source of
variation

cpDNA RAD-SNPs

d.f. Percentage
variation (%)

Fixation
indices d.f. Percentage

variation (%)
Fixation
indices

Among
lineages

1 75.05 FCT = 0.75 1 22.22 FCT = 0.22

Among
populations
within lineages

15 22.64 FSC = 0.91 16 11.47 FSC = 0.15

Within
populations

124 2.31 FST = 0.98 226 66.31 FST = 0.34
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 Ecological niche modeling
The Area Under Curve (AUC) value of the receiver operating

characteristic  (ROC)  curve  was  high  (>  0.977)  in  the  four  peri-
ods  (Supplemental  Fig.  S8a–d).  Annual  mean  temperature
(35%) and mean diurnal range (26%) made the greatest contri-
butions to the model under the current climate (Supplemental
Fig. S9, Supplemental Table S4). The potential distribution of P.
hupehensis under the present climate matched its current distri-
bution;  suitable  area  for  its  growth  was  limited  to  the  moun-
tains  around the Sichuan Basin,  especially  in  the northern and
eastern  regions  (Fig.  5a).  During  the  LGM  period,  the  suitable
area  was  significantly  smaller  in  the  southern  and  western
regions of  the Sichuan Basin  but  greater  in  the Qinling Moun-
tains  (Fig.  5b).  The  suitable  area  for P.  hupehensis around  the
Sichuan  Basin  was  greatest  during  the  LIG  period  (Fig.  5c).
Notably, during this period, an area of high suitability appeared
in  the  Hengduan  and  Daliang  Mountains.  Under  the  RCP  4.5
scenario for 2061–2080, the suitable area for P. hupehensis was
predicted  to  be  just  slightly  smaller  than  at  present,  and  the
suitable areas in the western and southern Sichuan Basin were
predicted to shrink under global warming (Fig. 5d).

 Discussion

 Phylogeographic conflicts between chloroplast
and nuclear DNA
 Significant chloroplast genetic structure

Pterocarya  hupehensis,  like  other  relict  tree  species  in  sub-
tropical  China,  shows strong phylogeographic  structure  (NST >
GST) based on cpDNA markers[5,41,42]. Most of the haplotypes are

private, except for H1 and H7, which are shared among popula-
tions. As reported for other angiosperm species, genetic differ-
entiation  among  lineages  of P.  hupehensis was  higher  when
assessed with cpDNA (FCT = 0.75) than with nuclear DNA (FCT =
0.22).  Such significant  chloroplast  genetic  structure  is  typically
attributed  to  maternal  inheritance,  as  chloroplasts  are  only
transmitted  by  seeds,  which  have  a  limited  dispersal  distance.
Seed-mediated gene flow can be influenced by seed dispersal
ability,  germination  and  dormancy,  seedling  establishment
ability,  and  so  forth.  The  wingnuts  of P.  hupehensis can  be
carried  over  short  distances  by  wind  and  dispersed  over  long
distances  along  rivers. P.  hupehensis,  as  a  relict  species,  is
present  in  restricted  microhabitats  and  shows  strong  niche
conservatism (moist riparian forests along rivers with an eleva-
tional  range  of  700–2,000  m  in  the  mountains)[45,96−99].  It
produces  relatively  few  seedlings,  even  when  abundant  seeds
are  present,  owing  to  low  seed  quality  and  difficult  seedling
establishment[51,52].  Taken  together,  these  factors  have  impe-
ded the exchange of chloroplast genes among populations and
shaped current genetic patterns.

 Different nuclear genetic structure
Optimal clustering based on nuclear genetic structure (from

RAD-seq data) divided P. hupehensis into two genetic clades in
both  Admixture  analysis  and  PCA.  More  subdivided  genetic
structures  were  recognized  in  the  Admixture  analyses  when K
values  were  larger.  Most  populations  in  the  eastern  lineage
were maintained in a single group from K = 2 to K = 5,  indica-
ting  extensive  gene  flow via pollen  dispersal.  However,  the
numerous  and  private  chloroplast  haplotypes  in  the  eastern
lineage  suggested  their  independent  evolution  (Fig.  1,

 
Fig. 2    BEAST-derived chronogram of 24 Pterocarya hupehensis haplotypes based on six chloroplast DNA (cpDNA) fragments. The divergence
time  are  shown  above  branches,  with  blue  bars  indicating  the  95%  highest  posterior  densities  (HPDs).  Posterior  probabilities  are  labeled  at
each node.
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Supplemental Fig. S3). Genetic differentiation among all popu-
lations was higher for cpDNA (FST = 0.98) than for nuclear DNA
(FST =  0.34).  Compared  with  maternal  inheritance  of  cpDNA,
parental  inheritance  of  nuclear  DNA  typically  exhibits  more
imprints  from  pollen  flow.  Thus,  the  inconsistency  in  genetic
structure  between  cpDNA  and  nuclear  DNA  (especially  for
wind-pollinated  species)  can  be  understood  as  arising  from
differences between seed-mediated and pollen-mediated gene
flows[5,100,101]. The present study provides another example of a
temperate  tree  species  with  stronger  genetic  structure  in  the
chloroplast  genome  (seed-mediated  gene  flow)  than  in  the
nuclear  genome  (pollen-mediated)[42,102,103].  Gene  flows  me-
diated  by  long-distance  pollen  dispersal  were  detected  here
and have been demonstrated in many other anemophilous tree
species,  such as P.  fraxinifolia, Quercus  robur, Zelkova  carpinifo-
lia,  and  others[104−106].  The  strong  East  Asian  monsoon  that
began  in  the  early  Miocene  may  have  enabled  the  spread  of
pollen  over  long  distances  and  thus  promoted  gene  flow
among populations[21].

Extensive  pollen  flows  of  anemophilous  tree  species  have
been reported to facilitate genetic exchange and delay genetic

differentiation  in  species  with  restricted  distributions[5].  Such
genetic exchange can improve population adaptation, particu-
larly  for  tree  species  with  slow  evolutionary  rates,  high  pollen
dispersal  capacity,  and  weak  reproductive  ability[107,108].  Com-
pared  with  other  wind-pollinated  species, P.  hupehensis has  a
relatively high level of genetic differentiation[109,110], which may
reflect  the  influence  of  slower  pollen-mediated  gene  flow,
higher  levels  of  genetic  drift,  and  local  adaptation  due  to
selection  pressure  associated  with  long-term  environmental
heterogeneity[109−111].  The  bottleneck  event  and  small  popula-
tion sizes of P. hupehensis may have led to high levels of genetic
drift.  In  addition,  long-established  small  and  isolated  popula-
tions of P. hupehensis are likely to have experienced more envi-
ronmental selection pressure, which may also have contributed
to a high level of genetic differentiation[112,113].

 Species differentiation in the early to middle
Miocene and later diversification
 Colonization occurs during the wet and rainy monsoon

Reconstructions  of  divergence  times  based  on  cpDNA  and
nuclear DNA revealed that the eastern and western lineages of

a

b

c

 
Fig.  3    Genetic structure of Pterocarya hupehensis based on 2,889 SNPs dataset.  (a)  Geographic origins of  18 P.  hupehensis populations and
their color-coded grouping at close to K = 2. The red dashed line represents the Sino-Himalayan/Sino-Japanese forest boundary. (b) Principal
component analysis (PCA), with pink and blue colors representing two clusters. (c) Histogram of the Admixture analysis for P. hupehensis with
K = 2.
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P.  hupehensis diverged  during  the  early  to  middle  Miocene.  A
similar pattern was reported for Cyclocarya paliurus, which also
belongs  to  the  Juglandaceae[18].  By  contrast,  most  relict  tree
species  in  this  area  diverged  during  the  Pliocene,  including
Davidia involucrata (4.81 Mya), Euptelea pleiosperma (3.64 Mya),
and Populus  lasiocarpa (3.66  Mya)[6,13,42].  Initial  intensifications
of  the  East  Asian  summer  and  winter  monsoons  began  in  the
early  Miocene  owing  to  the  rapid  uplift  of  the  Tibetan
Plateau[20,28].  Abundant  precipitation  associated  with  the
monsoons,  together  with  subsequent  cooling during the  mid-
to-late  Miocene  and  early  Pliocene,  promoted  speciation  and
lineage  differentiation  of  plants  in  East  Asia[16,114,115].  The  SJFR

contains  a  rich  diversity  of  temperate  flora,  which  benefited

from  the  changes  in  precipitation  pattern  and  incomplete

glacial  coverage  of  the  Quaternary  glaciation[10,116−118].  Our

species  distribution  modeling  provides  further  evidence  that

temperature and precipitation are the most important climatic

predictors  of  suitable  habitat  for P.  hupehensis.  Both P.
hupehensis and C. paliurus inhabit wet habitats near riverbanks

or streams with high-humidity microclimates. Previous research

has suggested that the characteristic of naked buds on tempe-

rate trees, as exhibited by P. hupehensis, may be associated with

colder temperatures and summer precipitation[18,119].

a

c

b

 
Fig. 4    Hybridization among populations of Pterocarya hupehensis. (a) Maximum likelihood (ML) tree inferred using Treemix; gene-flow events
are depicted with arrows, and ten migration events were allowed. Migration arrows are colored according to their weight. Horizontal branch
lengths are proportional to the amount of genetic drift that occurred on each branch. The scale bar shows 10× the average standard error of
the  entries  in  the  sample  covariance  matrix.  (b)  Heatmaps  of  residual  fit  from  the  ML  tree.  Residuals  white  through  blue  indicate  that  the
corresponding  populations  are  more  closely  related  to  each  other  than  on  the  ML  tree,  suggesting  confounding  events  between  these
populations. (c) Demographic history of P. hupehensis inferred with Stairway Plot 2 using unfolded site frequency spectra. The 95% confidence
interval for estimated effective population size is shown with gray lines.
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 Multiple driving forces for lineage differentiation
The Sichuan Basin acts  as  a  geographic barrier  between the

Sino-Himalayan and Sino-Japanese Forest  subkingdoms (more
or less along the 105°E line)[120,121], affecting patterns of genetic
diversity  and  structure  for  many  relict  species  (e.g., Davidia
involucrata[13], Dysosma versipellis[17], and Primula ovalifolia[122]).
Both  chloroplast  and  nuclear  evidence  demonstrate  that P.
hupehensis has also been influenced by this geographic barrier.
The NYX and DFX populations provide a clear illustration of this
barrier,  as  they  are  close  geographically  but  contain  chloro-
plast haplotypes and nuclear genes from different lineages. The
western  and  eastern  lineages  of P.  hupehensis appear  to  have
diverged at  the end of  the early  Miocene,  which was followed
by intensification of the EAMS. A previous study also detected a
monsoon-driven phylogeographic break between western and
eastern lineages of relict species around the Sichuan Basin[16].

North–south lineage divergence in  the Three Gorges region
of  the  east  Sichuan  Basin  has  been  documented  in
plants[14,31,44] and  animals[121].  Here,  chloroplast  haplotypes  in
the  eastern  lineage  of P.  hupehensis were  further  divided  into
northern and southern clades by the Yangtze River in the Three
Gorges  region.  The  barrier  of  the  Three  Gorges  region  blocks
gene  flow  by  limiting  seed  dispersal  and  animal  migration.
The  absence  of  this  phylogeographic  break  in  nuclear  gene
analyses can be attributed to long-distance pollen dispersal by
wind,  and  the  results  presented  here  for P.  hupehensis are  a
good example of this phylogeographic inconformity.

The  origin  and  formation  of  the  Yangtze  River  and  the
Sichuan Basin were synchronized with the uplift of the Tibetan

Plateau[123],  although  details  of  the  age  and  developmental
history of  the Yangtze River  have been vigorously debated for
more  than  100  years[124].  Our  results  suggest  that  the  Three
Gorges  barrier  to  plant  gene  flow  may  be  traced  back  to  the
late  Miocene,  5  Mya  before  the  speculated  formation  time  of
the  Yangtze  River[125].  Thus,  the  phylogeographic  break  for
some relict trees in the Three Gorges region may have occurred
in  the  late  Miocene.  Overall,  our  data  suggest  that  significant
changes  in  climate  and  geography  around  the  Sichuan  Basin
promoted  phylogeographic  breaks  between  the  western  and
eastern  lineages,  whereafter  in  the  eastern  lineage  of P.
hupehensis.

 Population demographic history after the Pleistocene
Climatic  fluctuations  in  the  Pleistocene  glacial  and  inter-

glacial  periods had substantial  effects  on many relict  plants. P.
hupehensis experienced  a  population  expansion  during  the
warm LIG period and a slight shrinkage during the LGM period.
However,  we  estimated  relatively  little  fluctuation  in  its  distri-
bution  around  the  Sichuan  Basin  from  the  Pleistocene  to  the
future,  consistent  with  findings  for  some  other  species[6,121].
Because  the  micro-environment  of  the  mountains  around  the
Sichuan  Basin  may  have  been  more  stable  than  that  of  other
regions,  East  Asia  acted  as  a  biodiversity  sanctuary  during  the
LGM  period.  There  was  a  brief  cooling  period  at  120–350  kya
(penultimate [Riss]  glacial  period) before the longest period of
Pleistocene  warmth[126],  and  we  detected  a  bottleneck  event
during  this  glacial  period  (200–400  kya).  We  speculate  that
temperature may have had an important effect on the distribu-
tion of P. hupehensis. The bottleneck effect can cause a series of

a b

c d

 
Fig. 5    Results of ecological niche modeling of P. hupehensis in four time periods from past to future. (a) Average projection of the model to
present climatic conditions. (b) Average projection of the model to the last glacial maximum (LGM: c. 21 kya BP (before present)). (c) Average
projection of the model for the last interglacial (LIG: c. 120–140kya BP). (d) Average projection of the model to the year 2070 (2061–2080) under
an  intermediate  climate  warming  scenario  (RCP  4.5).  Colors  from  blue  to  red  represent  the  degree  of  habitat  suitability  for P.  hupehensis
survival, from unsuitable to suitable.
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negative  chain  reactions,  especially  for  small  populations,
resulting  in  a  loss  of  genetic  diversity[127,128],  high  levels  of
population isolation[129],  and altered fitness because of genetic
drift  and  inbreeding[130].  The  occurrence  of  bottlenecks  or
adversity is likely to lead to high levels of genetic drift[127,131].

Our field investigations revealed that the current population
of P. hupehensis is small and fragmented, with only a few dozen
individuals  in  some  populations[52]. P.  hupehensis is  currently
listed as vulnerable on the IUCN Red List of Threatened Species.
Our findings highlight the risk of a gradual decline in effective
population  size  in  the  event  of  renewed  adversity  (Fig.  4c).
Thus, future work should aim to assess the genomic vulnerabi-
lity  of  each  population,  and  both ex  situ and in  situ conserva-
tion  of  these  small  populations  should  be  improved[111].  We
should  focus  not  only  on  the  effect  of  global  warming  and
greenhouse gas emissions on this species but also on the inter-
ference of human activities with its natural habitat.

 Conclusions

We  used  cpDNA  and  nuclear  DNA  data  to  reconstruct  the
phylogeographic  history  of P.  hupehensis. Both  cpDNA  and
nuclear genetic data revealed two distinct lineages correspond-
ing to two phylogeographic regions. However, the cpDNA data
suggest  a  relatively  isolated  and  stronger  phylogeographic
structure than the nuclear data. This result suggests that pollen
flow  plays  a  more  important  role  than  seed  flow  in  shaping
genetic structure. External geologic and climatic changes have
also  influenced  current  genetic  distribution  patterns.  Streng-
thening  of  the  EAMS  during  the  early  to  middle  Miocene
appears  to  have  been  the  main  driver  of  colonization  and
differentiation in P. hupehensis. The Three Gorges region, which
acts  as  a  seed dispersal  barrier,  promoted further  north–south
differentiation among the eastern lineages. In addition to popu-
lation  genetics  studies  and  modeling,  more  efforts  should  be
directed toward searching for P.  hupehensis populations in the
western Sichuan Basin. Genetic resources of P. hupehensis from
the  western  and  southwestern  Sichuan  Basin  should  be  given
priority.
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