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Trees are fundamental for Earth’s biodiversity as primary producers and ecosystem
engineers and are responsible for many of nature’s contributions to people. Yet, many
tree species at present are threatened with extinction by human activities. Accurate
identification of threatened tree species is necessary to quantify the current biodiversity
crisis and to prioritize conservation efforts. However, the most comprehensive dataset of
tree species extinction risk—the Red List of the International Union for the Conservation
of Nature (IUCN RL)—lacks assessments for a substantial number of known tree
species. The RL is based on a time-consuming expert-based assessment process,
which hampers the inclusion of less-known species and the continued updating
of extinction risk assessments. In this study, we used a computational pipeline to
approximate RL extinction risk assessments for more than 21,000 tree species (leading
to an overall assessment of 89% of all known tree species) using a supervised
learning approach trained based on available IUCN RL assessments. We harvested the
occurrence data for tree species worldwide from online databases, which we used with
other publicly available data to design features characterizing the species’ geographic
range, biome and climatic affinities, and exposure to human footprint. We trained deep
neural network models to predict their conservation status, based on these features. We
estimated 43% of the assessed tree species to be threatened with extinction and found
taxonomic and geographic heterogeneities in the distribution of threatened species.
The results are consistent with the recent estimates by the Global Tree Assessment
initiative, indicating that our approach provides robust and time-efficient approximations
of species’ IUCN RL extinction risk assessments.

Keywords: IUCN red list, neural network, R package, extinction risk, GBIF

INTRODUCTION

Of the estimated 350,000 vascular plant species, the c. 59,000 described trees species
(Botanic Gardens Conservation International, BGCI; Beech et al., 2017) represent
the bulk of biomass and are essential as ecosystem engineers housing and feeding
millions of species (Olson et al., 2001; Crowther et al., 2015; Bar-On et al., 2018).
Furthermore, trees provide many of nature’s contributions to people supporting
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the livelihood of virtually all humans, e.g., as sources of wood,
food, shade, firewood, construction, and carbon sinks (Luyssaert
et al., 2008; Fazan et al., 2020; Davies et al., 2021.

However, an increasing proportion of tree species are subject
to anthropogenic threats. The global IUCN RL, arguably the most
influential and comprehensive framework to estimate species
risk with extinction, lists 67 tree species that are either extinct
(EX) or extinct in the wild (EW) (IUCN, 2021). Many more
species (n = 11,548) are currently listed as threatened with
extinction meaning that they have been classified by experts to
face extremely high to high risk of extinction in the wild, based
primarily on criteria related to range size, population size, or
population decline.

The RL provides detailed and verified information on
species extinction risk and the potential threats; and is the
basis for conservation policy [informing, for instance, e.g.,
Convention on Biological Diversity (CBD), Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services
(IPBES), and Convention on International Trade in Endangered
Species (CITES)] and prioritization of millions of dollars of
conservation funds worldwide. Yet, due to the standardized
criteria, the expert-focused assessment process, and the required
documentation, the IUCN RL assessments are data intensive
and time-consuming (Juffe-Bignoli et al., 2016; IUCN Standards
and Petitions Subcommittee, 2017), and therefore, the IUCN
RL is taxonomically and geographically biased (Bachman et al.,
2019), and many species are classified as data deficient (DD)
or have not been evaluated (Nic Lughadha et al., 2020; IUCN,
2021). Hence, until early 2021, c. 30,000 tree species remained
without an RL assessment, forcing conservation decisions based
on incomplete and biased information. Furthermore, for efficient
conservation measures, extinction risk assessments need to
be repeated and updated regularly. Keeping extinction risk
assessments up to date is a major challenge for the IUCN RL
(Rondinini et al., 2014), because, in addition to the general
data and time constraints of RL assessments, reassessments of
already red-listed species are often less appealing and hence
down-prioritized.

As an attempt to speed up the process of assessing
species extinction risk for the RL, a variety of methods have
been proposed to automatically approximate species extinction
risk based on species occurrence data from online databases
(Bachman et al., 2011; Dauby et al., 2017; Pelletier et al., 2018;
Zizka et al., 2021a, see Cazalis et al., 2022 for a review). All
these methods have important caveats (Rivers et al., 2011; Nic
Lughadha et al., 2019; Walker et al., 2020) and cannot replace the
rigorous RL assessments. Yet, they can provide an approximation
of species extinction risk and offer the advantage of being scalable
to potentially large number of species.

For trees, a separate effort to boost the proportion of species
with known extinction risk assessment exists: the Global Tree
Assessment (GTA; BGCI, 2021). The GTA aims to assess the
conservation status of all tree species following IUCN RL
criteria to allow effective prioritization of conservation measures
(Newton et al., 2015). As of late 2021, the GTA included,
approximately 43,700 species, with about 20% of the known
species yet to be assessed or classified (BGCI, 20211). To achieve

this remarkable result, the GTA used a combination of semi-
automated assessments based on approximate species range
size from available occurrence data (for approximately 10,000
species) and data from national assessments and new expert-
based assessment. The process involved the coordination of a
huge international effort that took 5 years of research involving 60
institutional partners and over 500 experts (BGCI, 2021), which
exemplifies the complexity of this approach. In contrast to the
IUCN RL, the GTA identified 142 tree species as EW.

In this study, we present an automated assessment of the
extinction risk of all tree species for which occurrence data are
available at the Global Biodiversity Information Facility (The
Global Biodiversity Information Facility [GBIF], 2021). Building
upon the recently published R package IUCNN (Zizka et al.,
2022a), we harvested and preprocessed the occurrence data of
tree species already assessed in the IUCN RL and trained a deep
learning model to infer the extinction risk status of tree species
not yet assessed on the RL. Furthermore, we used the resulting
assessments with geographic distribution and threat level, to
highlight the most threatened taxonomic groups and to identify
the biomes and countries most vulnerable to anthropogenic
pressure. We demonstrated the reliability of our estimates by
measuring the prediction accuracy and its spatial consistency.

MATERIALS AND METHODS

Data Collection and Preprocessing
We obtained the most recent database of scientific names
of tree species from GlobalTreeSearch (Beech et al., 2017,
version 1.5), which included 58,496 species. We retrieved
the IUCN Red List extinction risk category using the R
package rredlist (Chamberlain, 2020; R Core Team, 2021) from
www.iucnredlist.org, yielding red list categories for 32,899 species
(retrieved on 3 October 2021). This also included the categories
data deficient (DD) (2,332 species) and EX as well as EW
(together 67 species). For the purpose of training a supervised
learning model, we disaggregated the data into 5 classes of
interest, namely, least concerned (LC), near threatened (NT),
vulnerable (VU), endangered (EN), and critically endangered
(CE), which totaled 30,500 species.

We then retrieved occurrence data from the Global
Biodiversity Information Facility1 using the R libraries
taxize and rgbif (Chamberlain et al., 2020, 2021). The search
returned 47,626,060 records (retrieved on 21.09.2021; DOIs in
Supplementary Table 1; see also Supplementary Data). Since
species occurrence records from the public database are error
prone (Maldonado et al., 2015; Zizka et al., 2020), we cleaned the
raw occurrences in a series of automated steps. First, we removed
records that could not be assigned to a species from our initial
list, for instance, due to synonymy (Cayuela et al., 2012; TPL
v1.0). Second, we removed duplicates and retained only records
derived from human observation, and preserved specimens or
literature, with a coordinate uncertainty smaller than 100 km.
Finally, we used the R package CoordinateCleaner v.2.0-20

1www.gbif.org
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(Zizka et al., 2019) to remove occurrences with suspicious
coordinates falling into a capital city, country centroids, the
GBIF headquarter, known biodiversity institutions, the sea,
the point 0/0, if the latitude and longitude were equal, or if
the occurrence was detected as a spatial outlier. After these
cleaning steps, our dataset included 23,535,210 occurrences
from 49,743 species.

Feature Generation
We used the IUCNN R package (Zizka et al., 2022a) to
calculate features for each species based on their occurrences.
The extracted features included geographic information (i.e.,
number of occurrences, area of occurrence, extent of occurrence,
and latitudinal range), presence of the species across different
biomes, proxies for climate, and human footprint (all features
are described in Supplementary Table 1 in Zizka et al., 2021a).
In some cases, not all features could be calculated, and we
omitted those species because the downstream IUCNN functions
cannot currently handle incomplete feature sets. The final dataset
included features and IUCN RL labels for training for 27,146
species and features only for 21,691 species (for which we
estimated extinction risk).

Model Training
The package IUCNN provides a framework to access the Python
library Tensorflow (Abadi et al., 2016) within R. Using this
framework, we trained fully connected neural networks with
fivefold cross-validation to estimate the prediction accuracy
across all samples. In each fold, the data were split into 80%
of the instances used for training and 20% for validation. We
monitored validation loss during training as a stopping rule to
prevent overfitting. We then computed the prediction accuracy,
quantifying the expected performance of the model on unseen
data as an average of the validation accuracy across the fivefolds.
After preliminary tests, we set the architecture of the neural
network to three hidden layers with 100, 60, and 20 nodes,
respectively, and rectifier linear unit (ReLU) activation functions.
Using the IUCNN implementation, we tested two neural network
models, a classifier with a SoftMax activation function in the
output layer and a regression model. Furthermore, we used
dropout (Gal and Ghahramani, 2016) with the rate set to 0.1
to prevent overfitting and allow the estimation of prediction
uncertainty. We trained the networks based on the five extinction
risk classes and using a simplified binary classification, including
possibly threatened (i.e., VU, EN, and CR) and possibly not
threatened (i.e., LC and NT), which we shortened to “not
threatened” hereafter. We evaluated the performance of the
models using the cross-validation accuracy.

Predicting Species Conservation
Assessment
We used the trained models to predict the extinction risk of the
21,691 unlabeled species in our dataset. The application of 100
Monte Carlo (MC) dropout replicates allowed us to measure
uncertainty around predictions (Gal and Ghahramani, 2016).
We combined our predictions with the available RL assessments

to summarize the estimated extinction risk within higher taxa
and by region. Specifically, we computed the number and
proportion of threatened species in each family to quantify the
level of heterogeneity in conservation status among taxonomic
groups. After assigning species to countries and biomes, we
also computed the number and proportion of threatened species
within these spatial entities.

Sensitivity Tests
We performed sensitivity tests to assess the extent of taxonomic
and geographic bias among the species used for training our
models, i.e., the species in the RL. Specifically, we looked at
the fraction of evaluated species across plant genera, families,
and orders assuming that a systematic bias would leave a
signature in their distribution. For instance, if the assessments
were carried out systematically by the taxonomic group, we
would expect a bimodal distribution where the fraction of
assessed species nears one in some groups and zero in others.
Similarly, we quantified the fraction of assessed species across
countries and biomes to estimate the level of heterogeneity in the
available RL assessments.

We then calculated the cross-validation prediction accuracy
for each country, to evaluate whether spatial biases in the
distribution of RL-assessed species may impact the accuracy of
our predictions. Specifically, we identified what tree species in
our test sets (from the 5 cross-validation folds) were found in
each country, based on the available geographic occurrences. We
then approximated the prediction accuracy for each country as
the fraction of species correctly classified out of all tree species
occurring in the country.

We performed 100 predictions for all species using MC
dropout probability as a measure of uncertainty around each
prediction (Gal and Ghahramani, 2016). This enabled us to
identify the MC dropout probability above which the classified
instances yield a predefined prediction accuracy. For instance,
we could identify the MC dropout probability threshold such
that instances classified with a higher probability yield a 95%
test accuracy, while others will remain “unclassified” (Gal and
Ghahramani, 2016). We performed this test to assess how many
species could be classified with high confidence (accuracy > 90%)
and whether the fraction of them assigned to the possibly
threatened category changes compared with the full set of
predicted species.

RESULTS

Model Selection and Performance of the
Best Models
The best-fitting model for the 5-class prediction was a neural
network classifier, which achieved a cross-validation prediction
accuracy of 66.9%, while the regression model yielded an
accuracy of 61.5%. LC species were correctly identified in
92.6% of the cases, while the accuracy was lower for the
other classes, particularly, the intermediate NT and VU classes
(Supplementary Figure 1). In most cases, the misclassified
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species were assigned to a neighboring class, indicating that the
model could still correctly identify some signal for these species.

The best model for the 2-class prediction (not threatened
vs. possibly threatened) was a neural network classifier, which
achieved a prediction accuracy of 83.7%, similar to the
corresponding regression model (83.5%). The accuracy was much
more balanced among assessments than in the model with 5
classes, with 87.1% of the not-threatened species and 78.1% of
the possibly threatened species correctly classified (Figure 1A).
Given the substantially higher accuracy of the binary predictions,
we focused, hereafter, on the results obtained from this model.

Classifications
Our model predictions resulted in an increase in the number
of extinction risk assessments from 30,500 to 52,191 species
compared to the RL (the detailed classification results are
available in Supplementary Table 2), reducing the number of tree
species without either a full IUCN assessment or a preliminary
automated assessment from 29,462 to 6,238 (Table 1). They
remained unassessed because the features could not be generated
for these species due to a lack of occurrence data.

With the binary classification model, we predicted 50% of
the species as not threatened, while the Red List assessments
consist of 60% not-threatened species (Table 1). Thus, we added
more possibly threatened species than could be expected by
extrapolating from the RL existing frequencies. We estimated
22,889 tree species as possibly threatened (39.1%) and 29,302 as
not threatened (50.1%, Figure 1B and Table 1).

Taxonomic Patterns of Tree
Conservation Status
Our dataset included 288 families and 57 orders with tree species
(Supplementary Tables 3, 4), several of which we estimated
to include a large fraction of possibly threatened species. The
family with the highest number of possibly threatened tree species
was the Rubiaceae (Figure 2A). With its 4,838 tree species
of which 3,925 were assessed in this study, it is the second
most species-rich family in terms of tree species. The family
with the most tree species was the Fabaceae with a total of
5,483 tree species of which, we assessed 4,890, among these
1,765 as possibly threatened. In 13 families, the percentage of

TABLE 1 | The number of tree species in different extinction risk categories on the
official IUCN RL and following predictions by our deep learning approach.

Category IUCN RL % Predictions % merged %

5 classes

LC 16,349 53.6 11,670 58.0 28,019 53.7

NT 1,953 6.4 4 0.1 1,957 3.7

VU 4,864 15.9 3,569 14.4 8,433 16.2

EN 4,836 15.9 4,248 20.4 9,084 17.4

CR 2,498 8.2 2,200 7.1 4,698 9.0

NE/DD 27,929 6,238 6,238

2 classes

Not threatened 18,302 60.0 11,000 50.7 29,302 56.1

Possibly threatened 12,198 40.0 10,691 49.3 22,889 43.9

threatened tree species was 100%; however, those were all families
comprising only 1–3 species (Supplementary Table 3). When
considering only families with more than 10 evaluated tree
species, Campanulaceae had the highest proportion of possibly
threatened species (87%; Figure 2B).

Spatial Patterns of Tree Extinction Risk
With more than 42,000 tree species, the tropical moist broadleaf
forest was the most diverse biome in our dataset (Figure 3 and
Supplementary Table 5). It also comprised the highest number of
possibly threatened species (17,749), meaning that we estimated
41.5% of all tree species occurring in tropical moist broadleaf
forests to be possibly threatened. The second highest fraction of
possibly threatened tree species occurred in tropical coniferous
forest comprising 5,107 tree species with 1,530 of them (30.0%)
predicted to be possibly threatened.

We found the highest sampled diversity of tree species in
our dataset in Brazil (Supplementary Table 6). The country
harbored 9,995 species, of which, 2,397 were possibly threatened,
making Brazil also the country with the highest number of
possibly threatened species (Figure 4A). The fraction of possibly
threatened tree species was highest in Madagascar. Including
our status predictions, we have extinction risk information
for almost all tree species in Madagascar (3,332 of 3,335). Of
these tree species, we found 57%, (N = 1,893) as possibly
threatened (Figure 4B).

Sensitivity Tests
A taxonomic bias in the subset of species that have already been
evaluated by the IUCN and which we used to train our models
could hamper the accuracy of our supervised learning method
on other species. The fractions of IUCN Red List evaluated
species within orders, families, and genera followed unimodal
distributions except for a slight over-representation of fully
assessed groups (Supplementary Figure 2). This suggests a lack
of systematic bias in the evaluated data, despite their variability
across taxonomic groups. We observed a similar pattern among
all species and among the subset of 48,571 species that were used
in this study (fewer species due to cleaning steps). Additionally,
the IUCN assessment rates among orders, families, and genera
were independent of the number of species they encompassed,
thus pointing to a lack of systematic bias in the training data
(Supplementary Figure 2).

Ignoring countries comprising fewer than 10 tree species,
all countries had at least 40% of their tree species assessed
on the RL, and these fractions of assessed species across
countries followed a unimodal distribution (95% range: 45.6–
87.9%; Supplementary Figure 3A). We did however observe a
trend toward higher assessment fractions in countries with fewer
tree species Supplementary Figure 3B). Similarly, assessment
fractions across biomes showed a trend toward lower assessment
fractions in highly diverse biomes (Supplementary Figure 3C).
For instance, in boreal forests, 83% of trees were assessed on the
RL, while in tropical moist broadleaf forests, only 52% of all tree
species were assessed.

Despite the heterogeneous fraction of assessed species in the
RL across countries (Supplementary Figure 3C), the prediction
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A B

FIGURE 1 | The classification results and performance of a deep learning model trained to identify possibly threatened tree species (binary classification; see
Supplementary Figure 1 for the 5-class confusion matrix). (A) Confusion matrix showing the per-class prediction accuracy (cross-validation test sets) and (B)
assessment of 58,429 species combining the IUCN RL (darker shades) and our predictions (lighter shades). Of the 52,191 species that could be assessed, 56%
were estimated as not threatened and 44% as possibly threatened.

accuracy of our model was high and relatively homogenous
across countries (Figure 4C). For instance, in most species-rich
countries in South America and Central Africa, the prediction
accuracy exceeded 80% despite a generally lower fraction of
species included in the RL. The prediction accuracy was however
slightly lower in Southeast Asia, where the fraction of species
evaluated on the RL is lowest. Overall, these results show that
our model managed to capture the general properties of species
conservation status without overfitting toward regions of the
world with denser data.

Limiting the predictions to those with a higher MC dropout
probability, yielding a prediction accuracy of 90%, reduced
the number of species that could be confidently assessed to
16,703, thus leaving 4,988 species unclassified. However, the
proportion of possibly threatened species among the evaluated
species remained similar, slightly decreasing from 46.9 to 45.1%
(Supplementary Table 2). This indicates that while slightly more
species in the not-threatened class could be predicted with high
confidence compared with that in possibly threatened species, the
results are robust to prediction uncertainty.

DISCUSSION

Improved knowledge of species extinction risk helps to guide
conservation effort and avoid taxonomically and geographically
biased decisions. Trees are pivotal to human livelihood and play
a fundamental role in most terrestrial ecosystems (Chavan et al.,
2016; Watson et al., 2018; Keppel et al., 2021). Thus, in some
cases, a focus of conservation efforts on protecting tree species
and, hence forests, can be an effective way to conserve a large
share of biodiversity (Watson et al., 2018). This importance of

trees is one reason why evergreen rainforests have long been at
the forefront of conservation effort at the expense of other diverse
and unique habitats (Parr et al., 2014; Veldman et al., 2019;
Silveira et al., 2021). The ecological and economic importance
of trees and their potential as umbrella species are reasons for
the concentrated effort and systematic assessment of the GTA
in 2015 (Newton et al., 2015). In this study, we complemented
this effort with an automated deep learning assessment to
approximate extinction risk assessments for all tree species with
sufficient distribution data available, within a fraction of the
time needed for full assessments on the RL or during GTA.
Our results show that thousands of tree species are possibly
threatened with extinction and that their state of conservation
is heterogeneous among taxonomic groups and across different
biomes and countries.

Using machine leaning approaches is increasingly common in
biological research, for instance, to infer the intraspecific genetic
diversity of amphibian taxa or predict the conservation status of
data-deficient mammals (Bland et al., 2014; Barrow et al., 2020;
Lee et al., 2020). More specifically, using machine learning to
assist conservation prioritization is an active field of development
(Walker et al., 2020; Cazalis et al., 2022; Silvestro et al., 2022;
Zizka et al., 2022a), and automated methods have the potential
to process large numbers of species quickly (Pelletier et al., 2018;
Zizka et al., 2021b).

The increased assessment speed together with the capacity to
close taxonomic gaps of knowledge by transferring knowledge
from groups with good data availability (i.e., the training
data) is a clear strength of automated assessment methods
(Cazalis et al., 2022). Yet, automated methods to approximate
extinction risk face several challenges in the IUCN RL framework,
including minimum data requirements (Rivers et al., 2011;
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FIGURE 2 | The proportion of possibly threatened species among trees grouped by families. (A) The 10 families with the highest number of possibly threatened tree
species and (B) the 10 families with the highest proportion of possibly threatened tree species (and comprising more than 10 tree species in total). Red indicates
counts of possibly threatened species, and blue indicates counts of possibly not threatened species, with darker shades used for IUCN RL assessments and lighter
shades for our automated assessments. In gray, we showed the number of species not assessed. Percentages next to family names indicate the percentage of
possibly threatened tree species in this family.

Nic Lughadha et al., 2019), inability to explicitly use the IUCN
criteria and subcriteria, and a reduced documentation (which
is why most automated assessments cannot feed back into the
IUCN RL, Cazalis et al., 2022), as well as the error rate and
low traceability and transparency (Walker et al., 2020). The
IUCNN approach has the specific strength that it can integrate
heterogeneous input features, yet it is sensitive to the class
imbalance in the training data and prone to underestimating
the number of species in intermediate extinction risk categories,
when using the full suite of IUCN categories (see Zizka et al.,
2022a for details). Automated assessments are complementary

to full assessments on the IUCN RL. We consider filling
knowledge gaps of extinction risk in specific taxonomic groups
or geographic regions for the use in (1) synthetic academic
research (for instance, linking extinction risk to species functional
traits), (2) conservation communication to a broader public (for
instance, indicating possibly threatened species in an ecosystem),
and (3) conservation research (for instance, identifying priority
species for full IUCN assessments), the prime applications for
automated assessments.

While species occurrence data from large databases are
inevitably affected by error, previous studies (Walker et al., 2020,
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FIGURE 3 | Number of possibly threatened (red) and not threatened (blue) tree species in different biomes after Olson et al. (2001). Darker shades indicate species
count from the IUCN RL, while lighter shades indicate species counts from our automated assessment. Percentages next to biome names indicate the percentage
of threatened tree species in this biome. Biome names are simplified for better readability.

2021; Zizka et al., 2020) have shown that using stricter filters to
select the species occurrences (for instance, by only considering
recent occurrence records when generating the features) did not
substantially increase the predictive accuracy but did decrease
substantially the number of species that can be predicted (Zizka
et al., 2020). We, therefore, opted to limit record cleaning to basic
automated filters.

Our predictions are based on a range of data that can be
obtained from publicly available geographic occurrence records.
In contrast to Pelletier et al. (2018) who included morphological
trait data such as woodiness, leaf phenology, and plant height
to predict plant conservation status, we focused on data derived
from geographic occurrences exclusively. We assumed that, since
“trees” are a functionally defined group [i.e., woody, tall, few,
or single-stemmed, as defined by Botanic Gardens Conservation
International (BGCI); Beech et al., 2017], the variation in traits
for which data were available (mostly records of traits such as
growth form, maximum height, etc.) was negligible. Thus, we
considered these traits uninformative in our case. However, we
acknowledge that the inclusion of additional data (such as species
economic value and human use) might contribute to improving
the predictions. To include anthropogenic factors in the model,
we used the human footprint in areas of occurrence of the species,
as suggested by previous studies (Venter et al., 2016; Walker et al.,
2020).

One of the main concerns in using supervised learning
methods such as neural networks is the imbalanced
representation of classes in the training set. This is an inevitable

property of data from the IUCN RL, where some classes, e.g.,
LC, are over-represented compared with others, e.g., VU.
Pelletier et al. (2018) addressed this issue, in a random forest
model, by sub-sampling the training data. This, however,
means excluding training instances, i.e., discarding available
information, to obtain a more balanced training dataset. In
this study, we tackled this issue by grouping the five IUCN
classes into the two broader “possibly threatened” and “not
threatened” classes. The resulting binary classification, resulted
in more balanced classes and higher prediction accuracy, as
expected based on previous studies (Stévart et al., 2019; Zizka
et al., 2020). Still, non-negligible error remains in identifying
species extinction risk and, in our model, classifying as not
threatened the several species that appear as threatened
on the IUCN RL. While some of the error is linked to the
imperfection of predictive methods, we also found that several
misclassified species include cultivated plants. These include
the Fraser fir (Abies fraseri), several Araucaria species, Ginkgo
biloba, Sequoia sempervirens, and Magnolia stellata, all of
which are at risk of extinction in the wild, but widely found
in cultivated settings and gardens. Their wide distribution
as cultivated plants is reflected in their recorded geographic
occurrences and probably explains the discrepancy between RL
and automated assessments.

Since we applied a supervised learning approach, it is
important for the data to be unbiased meaning that the assessed
species should not differ systematically from unassessed species.
We performed several tests to detect possible biases in the data
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A

B

C

FIGURE 4 | Tree species threat level around the globe: (A) number of threatened tree species per country and (B) fraction of threatened tree species per country
(with at least 5 assessed species). (C) Prediction accuracy across countries: Despite the spatial biases in IUCN RL assessments, our model performed well with
estimated accuracy above 80% in most countries.

and found no evidence of systematic taxonomic biases, with most
groups sharing similar fraction of species already included in the
RL. We did, however, detect evidence of geographic bias, with
some regions of the world (especially, highly diverse tropical
areas) presenting a lower fraction of assessed species in the RL.
Yet, the estimated accuracy of our model was relatively unaffected
by this bias, showing that the predictions obtained through the
neural network were robust to this bias.

The number of possibly threatened species per plant family
correlated with the overall number of species per family:
The ten plant families with most possibly threatened species
(Figure 2A) were also the ten families with the highest overall
tree richness and represent some of the most species-rich families
worldwide (Ehrendorfer et al., 2018). In contrast, the list of
families with the highest fraction of possibly threatened species
(Figure 2B) comprises different families with likely individual
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reasons for the high proportion of possibly threatend species.
For six out of ten families in this list, a specific common threat
related to a globally restricted distribution seems plausible. The
families Sphaerosepalaceae and Sarcolaenaceae are endemic to
Madagascar, and in the Buxaceae and Pandanaceae, the most
species-rich genera Buxus and Pandanus, respectively, have
centers of diversity and endemism in Madagascar. Hence, the
high extinction risk in these families is likely linked to the
high rates of land use change in Madagascar and their known
detrimental effect on biodiversity. The possibly threatened tree
species in Campanulaceae belonged exclusively to the peculiar
radiation of phylogenetically derived woody Campanulaceae
species on the Hawaiian archipelago (genera Clermontia, Cyanea,
Delissea, Sclerotheca, and Trematolobelia, Givnish et al., 2009;
Zizka et al., 2022b). Hence, the high proportion of threatened
tree species in Campanulaceae is linked to the low proportion of
tree species in the family (most Campanulaceae are herbaceous)
and the specific threat by land use change and invasive plants
and animals in the Hawaiian archipelago. The gymnosperm
family Araucariaceae mostly comprises species in the genera
Araucaria and Agathis occurring in Australasia and South
America, which are often threatened by logging and human
fire suppression;2 plus the “living fossil” Wollemia nobilis, only
known from New South Wales in Australia. In Canellaceae,
Octoknemaceae, and Anisophylleacea, the reasons for the high
proportion of threatened species are less clear since these families
have a larger geographic distribution. Yet, species in these
families are mostly forest species in tropical and subtropical
Africa and America threatened by on-going land use change.
Similarly, Dipterocarpaceae are important elements of tropical
rainforests particularly in Southeast Asia often threatened by
logging and deforestation.

Since the tropical moist broadleaf forest comprises most
known tree species, it unsurprisingly also harbors the highest
number of threatened trees. However, in this biome, we also
predicted 41.5% of the tree species to be threatened with
extinction, while no other biome exceeds 30%. We considered
mostly two reasons for the outstandingly high number of
possibly threatened species in the tropical moist broadleaf
forest. First, many tropical and subtropical islands harbor
tropical forests with high numbers of endemic species and
high levels of anthropogenic threat at the same time, for
instance, New Caledonia, the Philippines, and Madagascar
(Mittermeier et al., 1996; Myers, 1988). These biodiversity
hotspots are unique because they harbor many endemic plant
and animal species and face high rates of depletion. Second,
tree species in the moist tropical forest often have small
populations (for instance, less than 1,000 individuals for an
estimated 6,000 tree species in Amazonia; ter Steege et al.,
2013), and individuals are often scattered throughout their
range (Zizka et al., 2018). Small population sizes and the
resulting small area of occupancy are likely to lead to an
increased species risk of extinction and are explicit criteria in
RL assessments. In contrast, average range sizes of trees in
other biomes, for instance, in African savannas or boreal forests,
are often large.

2www.iucnredlist.org

Countries with tropical forests show high numbers and
fractions of possibly threatened tree species, in line with our
observation that tropical biodiversity hotspots are exposed to
high risks. The spatial patterns of extinction risk estimated in this
study are consistent with the estimates produced independently
by the GTA (BGCI, 2021), indicating that they are robust and not
a product of the data or method used. Brazil harbors the highest
number of threatened species, and the threat is continuing as the
timber of possibly threatened species is traded in vast amounts,
primarily to countries of the global North (Brandes et al., 2020),
and the rates of deforestation remain extremely high (accessed on
13. August, 2021).3 The high proportion of possibly threatened
species in Madagascar is consistent with the recent report of
Beech et al. (2021), which estimated 63% of Malagasy species
to be threatened. Among them, there are many Pandanaceae
species (Callmander et al., 2007), 3 of the 6 endemic baobab
(Adansonia spp., Malvaceae), and the newly described Sapotaceae
species Labramia ambondrombeensis (Baum, 1995; Randriarisoa
et al., 2020). As 93% of Madagascar’s tree species are endemic,
conservation efforts in the country are fundamental to preserve
this staggering and unique diversity (Beech et al., 2021) and
conserve the basis for a sustainable development of the countries’
human population.

Trees represent an irreplaceable component in most terrestrial
ecosystems, and the very existence of entire biomes depends
on their biodiversity. We found that a large fraction of all
tree species are at risk of extinction, and available data show
that extinctions have already taken place in recent years. Yet,
it is not too late to prevent the loss of most of the tree
biodiversity, but conservation efforts must step up now. We
hope that our results can help prioritizing conservation action
and raising awareness of the urgency to address the ongoing
biodiversity crisis.
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